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Preface

You are holding the volume of extended abstracts
of the symposium. on Applied Mathematical
Programming and Modeling (APMOD93) in your hand.
The institutional organizer of the event is the
Computer and Automation Institute of the
Hungarian Academy of Sciences, venue: Budapest,
Hungary, date: January 6-8, 1993.

The purpose of APMODY93, as a successor of
APMOD91, held at Brunel University, London, UK,
1991, was to provide a continuing forum for new
achievements in computational mathematical
programming and modeling and their applications
in solving 1large and difficult real-life
problems.

The organization of APMODS93 was supported by many
enthusiastic individuals and bodies. The bulk of
the work in preparing the scientific program was
done by the members of the International Program
Committee.

This volume contains the extended abstracts of
the papers accepted for presentation and received
by December 1, 1992. The papers appear by the
first authors, in alphabetic order.

It is our belief that the present volume will
contribute to the rapid exchange of scientific
information in the field of applied mathematical
programming and modeling.

Budapest, December 1, 1992

;
Istvdn Maros
Chairman

International Program Committee
APMOD93
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Implementing a Maximum Flow Algorithm:
Experiments with Dynamic Trees

(Extended Abstract)

T. Badics and E. Boros *
November 19, 1992

1 Introduction

In this paper we report on an implementation of a maximum flow algorithm by
Cheriyan and Hagerup [1]. Our aim was to test the behavior of this algorithm
in practice, concerning it’s good theoretical worst case bound. We were particu-
larly interested in the effect of using theoretically well behaving data structures
such as dynamic trees [11}], and Fibonacci heaps [13]. We also made comparisons
to two preflow-push based algorithm by Goldberg and Tarjan (10], and to an
implementation of pushes along several edges without using dynamic trees.

2 Basic notions and the PLED algorithm

We assume that the reader is familiar with the generic maximum flow algorithm
in [10] and refer to [10] for definitions of the terms network, source s, sink t, edge
capacity c(v, w), flow, maximum flow, preflow f, flow excess e(v) of a vertex v,
residual graph, residual capacity rescap(v, w) of the edge (v, w), valid labeling d,
active vertex, push, saturating push, and nonsaturating push. Let G = (V, E)
denote the digraph (assumed symmetric) corresponding to the network. Let
N =|V|, M = |E|.

Our implementation is based on the¢ algorithm developed by Cheriyan and
Hagerup (see [1]). Following [1] we shall refer to this algorithm as PLED (short-
hand for Prudent Linking and Excess Diminishing). This algorithm is an in-
stance (with one minor exception) of the generic preflow algorithm by Goldberg
and Tarjan [10]. PLED also uses an idea introduced by Ahuja and Orlin [4]

*The second author is supported in part by the Office of Naval Research (Grants NOOO14-
92-J1375 and N00O14-92-J4083).
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of scaling the volume of the pushes. The scaling factor plays here, however, a
slightly different role: the limits imposed on the volume of a push are not the
same as in [4]. A third idea in PLED is randomization: after each relabeling of
a vertex v, the edgelist of v is permuted randomly. This random permutation
ensures a better theoretical running time. Noga Alon showed in (3] that this
randomization can be replaced by a deterministic procedure. The worst case
running time of PLED, using the randomized procedure is O(N M + N%(logN)?)
with high probability (see [2]). Using Alon’s derandomization, the deterministic
worst case bound improves to O(NM + N8/3(logN)). The worst case bound
without randomization is O(N Mlog(N)).

Three main data structures are essential for PLED.

e Ordinary heap that contains vertices which have big excesses and which
are ordered by their distance labels. This structure supports the easy
selection of a vertex for a push. (Select a vertex with the minimal distance
label among the vertices having large enough excesses).

e Fibonacci heap(see [13]) contains the rest of vertices, ordered by their
(small) excesses. This supports constant (amortized) time decrease key
operation and fast update of the scaling factor.

¢ Dynamic trees structure (see [11]) to maintain a spanning forest F
of G containing a subset of the current edges, where the value associated
with an edge in F is its residual capacity. This structure is able to send
flow value along a path of length L in (amortized) time O(logL)

3 Implementation

Since the algorithm requires the above data structures to achieve the theoreti-
cally best performance, we decided to implement all of them.

Beside the above data structures, we implemented a routine for randomly
permuting the edge lists of the vertices. Although the deterministic permuta-
tion of Alon derandomizes the algorithm, the overhead of such a permutation
generating procedure is so large that we did not expect much improvement
by implementing such a deterministic procedure. Moreover since our instances
were mostly randomly generated, after some preliminary experiments we used
the PLED algorithm without random permutations.

For comparison reasons we coded Goldberg’s simple preflow-push algorithm
using simple FIFO queue for selecting the active vertices, and the dynamic trees
version of this algorithm described in the same paper ([10]). Later we refer to
these codes as GOLD and GOLDYN respectively. In the code GOLDYN we
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did not control the size of the dynamic trees. Thus we got a code which has
theoretical worst case bound O(N MlogN) instead of O(NMlog(N?/M). The
reason for this choice was mostly lack of time and the expected overhead of such
a control mechanism. Besides, in the range of examples we tested the codes,
the benefit from such size control, even without the overhead, probably is not
significant.

For testing the performance of the dynamic trees data structure, we im-
plemented its operations (find-min, add-value, find-root, link, cut, etc.) with
storing the trees explicitly and executing these operations in the obvious (linear
time) way. Hence we avoided the overhead of handling Splay trees and compli-
cated updates. Later in this paper the codes using these “non-dyvnamic tree”
operations are called NPLED and NGOLDYN. Note that the number of ele-
mentary operations for PLED and NPLED (or GOLDYN and NGOLDYN) are
the same on the same instance, only the way of handling the tree operations are
different. Therefore the difference in running time shows exactly the impact of
the dynamic trees structure.

In our implementations of all the codes we employed an idea, mentioned in
([10]), the so called “global-" or “big-relabeling”. Our early experiments showed
clearly, that in PLED just like in GOLD or GOLDYN, the running times of the
variant which uses global-relabeling were much smaller (orders of magnitude)
than the one which does not use it. Therefore we built in some heuristic param-
eters controlling the calling frequency of big-relabeling and affecting thus the
running time.

A “big-relabeling” step consist of two breadth-first-searches, one starting
from the sink and working on the sink side of the residual graph, and another
one for the source side, starting from the source. In these breadth-first-searches
the shortest distance is calculated from each vertex to the sink on the sink side,
or to the source on the source side, respectively. Unfortunately breadth-first-
search is a relatively expensive operation (it takes O(M) steps), so the calling
frequency of big-relabel is very important and can be a subject of later studies.

We implemented another mechanism to achieve better running times in all
three codes. Namely at initialization the algorithm calculates an upper bound
U on the maximum flow value by taking the minimum of capacities of some
cuts. Then it creates a new source by adding an artificial vertex S and a new
arc (S, s) with capacity U to the network, where s was the old source. The
new problem is obviously equivalent with the old one, and the extra cost of its
implementation is negligible. The advantage of doing this is that we do not let
the algorithm push too much excess into the network, reducing in this way the
runtime of the second phase. We have found instances showing that without
this procedure the running time was significantly bigger due to the long second
phase.
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4 Experimental results

For the experiments, we used the DIMACS suggested problems, and the gen-
erators GENRMF, WASHINGTON, and AC-MAX [6,5,7]. (See the DIMACS
document “The Core Experiments”). The families of networks we report on
include the ones suggested by “The Benchmark Experiments”, and two classes
of problems made intentionally very difficult for Goldberg’s preflow-push algo-
rithm.

All the experiments were carried out on a Sun Sparc 1+ Workstation under
UNIX operations system.

5 Conclusions

Summarizing our work, we can conclude that although the PLED algorithm
has a very good theoretical worst case bound, in practice Goldberg’s simple
preflow-push algorithm outperforms it on most of the examples of this study.

Our study shows that the structure of the networks is the most important
factor in ranking the algorithms. One such parameter to be considered, reflect-
ing the structure of the network, could be the relative distance between the
source and the sink.

In this study we were particularly interested in the effectiveness of dynamic
trees. Our experiments show clearly that there are families of problems for
which dynamic trees improved the performance of our code at a small cost. To
determine the properties of network classes on which the algorithms GOLDYN
or PLED are the best would be an interesting topic of later works.

Let us remark finally that Fibonacci heaps did not help much in these exam-

ples. They did not improve neither the running time nor the number of selection
steps of PLED.
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On decomposition of dual variables in linear
programming and its economic interpretation

Erik B. Bajalinov

Department of Mathematics, University of L.Kossuth,
4010 Debrecen, Pf.12, Hungary

Cousider the following linear programming (LP) and linear fractional programming
{LFP) problems

max P(z), (1)
max D(z), (2)
Teaéx Q(z), (3)

where Q(z) = P(z)/D(z), P(z)=3;_, p;zi+po, D(z) =27 djzj+do>0
forall z€e S={z€ R": Az <), z >0}, Aism X n matrix, i.e. A= ||a;j]lmxn,
z = (21,22, *,Zn)T, b= (b1, b3, ,bm)7; aij, bi, pj, d; are scalar constants and
T denotes the transpose of a vector. Assume that the feasible set S is non-empty
and P(z), D(z) and Q(z) are not constant on S.

Let the basis feasible solution which maximizes the objective function D(z) be vec-
tor z° = (z},23,--+,25,0,0,---,0)7. Our aim now is to show that for any op-
timal solution of problem (2) we can find such vector p = (po,p1,*--,pn) that
z* is optimal solution of LP problem (1) and LFP problem (3). Further, let
B = (A1, Az, -+, An) be the optimal basis associated with the positive variables,
where A; = (a,j,a2j, -, am;)7 is j-th column vector of matrix A. Because the basis
vectors are linearly independent we have

A,'=ZA.-:L'.'_,', ;j=12,...,n,

i=]
and we use these coefficients z;; to define the following
A = Y1 Pisij = Pj
A;’= 2:’;1 diz;; — d; 1=12,...,n. (4)
Aj(z*) = D(z*)A) - P(z*)A]
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Further, the values A;(z*) can also be put in the form
Aj('z.)=ZPiR{j“PjD(I')—POA;"» J= 1,2,...,n,
1=1
where R;; = D(z%)zi; — Az, ¢ =-1,2,--- ,m, j=1,2,---,n.

I
Because the vector z* is an optimal solution of (2) we have, {1].

{ =0. j=1,2,...,m,

Al
J

_ (5)
>0 j=m4+1,m+2,...,n,

As in [1] and (2] the basis of LP problem (1) and LFP problem (3) is optimal in
original form if A}, > 0 for all j and Aj(z*) > 0 for all j respectively but we require
only to consider 3y = m + l,m + 2,--- n because

A =45,z")=0 j=1,2,---,m.
The corectness of the following assertion is obvious.

Theorem 1 If vector p = (po,p1,- -, Pa) satisfies the conditions

'-': izi; — p; 2 0,
z:lp ’ P . " j=m+11m+2""n’ (6)
S piflis — piD(z°) — pAY 2 0,

then z* is an optimal solution of LP problem (1) and LFP problem (3).

We denote the set of vectors p which satisfy the inequalities (6) by H. It is obvious
that H # 0. Indeed, if p = Ad where A > 0 and d = (do,d;, - -,d,), then using (4)
and (5) we get

A =AA7 20

Aj(z7) = D(z*)(AAY) — (AD(z*))AY = 0 } j=m4+lm+2...,n

It means that set H contains at least the ray Ad where A > 0 .
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Let us now consider the dual problems corresponding to primal problems (1), (2)
and (3) respectively, [1] and (3],

Minimize o(u) =310, bu; + po )

subject to in GijUi 2 Pi, i=12-,n } (7)
u; 2 0, t=1,2,---,m )

Minimize ¢(v) =3 o, bivi+do )

subject to o aivi > dj, j=1,2---,n (8)
v, 20, i=1,2,---,mf

Minimize Y(y) =vo

subject to  doyo — Y 12, bivi 2 po,
djy°+zz';la‘jyi2pj, j=1723""n
yl'>0v i=1a2v"'am

The next theorem indicates an important relationship between the optimal solutions
of these problems.

Theorem 2 If LP problems (1), (2) and LFP problem (8] have at least one common
non-degenerate optimal solution z°, then the following decomposition takes place

u; =y, +Q(z°)], i=12,...,m, (10)
where u* = (uj,u3,...,up), v* = (v§,v3,...,v5), ¥" = (¥5,¥3,--.,yo) are optimal

solutions of dual problems (7), (8) and (9) respectively.

Proof. Suppose that vector z* is a common non-degenerate optimal solution of (1),
(2) and (3). Let us replace the k-th element b; of vector b by b + €. Here and
in what follows this replacement is claimed to effect no change in the basis of the
optimal solution. In accordance with LP theory [1], for the new optimal solution
z' = (24,24, -+,2.,0,0,---,0)T we have

P(z') = P(z") + eug, (11)
D(z') = D(z*) + ev;. (12)
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Analogously, in accordance with [4] for LFP problem (3) we get

N = Q(z") + —YE

This equation can be written as  _
P(z') = Q(z")D(z') + ey;.
A comparison of the latter with (11) makes us infer that
P(z") + eup = Q(z*)D(2) + ey;.
Making use of equation (12) in the latter we find
cup = eyg + Q(z")ev;.
It means that the decomposition (10) is correct.

Let us now focus on the economic interpretation of the results described above.
Let a certain company manufacture n differend kinds of a certain scarce product.
Further, let p; be the profit gained by the company from a unit of the j-th kind of the
product, po be some constant profit gained whose magnitude is independent of the
output volume, b; be the volume of some resource ¢ available to the company and a;;
be the expenditure quota of the i-th resource for manufacturing a unit of j-th kind of
the product. Denote the unknown output volume of some j-th kind of the product
by z;. If D(z) is a total output of the product, then problem (2) corresponds to
the economic interests of the consumers. If the company’s aim is maximization of
its profit P(z) and/or production efficiency Q(z) calculated as a profit gained from
a unit of output, then problems (1) and (3) correspond to the company’s economic
interests. Suppose that vector z* maximizes an output function D(z) on the feasible
set S, i.e. =" is the best output plan from the customers’ point of view. If the profit
vector p satisfies the conditions (6), then vector z* maximizes the company’s profit
P(z) as well as production efficiency Q(z). It means that to maximize its profit
and/or production efficiency the company ought to organize its manufacturing in
accordance with an output plan z* which conforms to the economic interests of the
consumers in the best way. In this case we will say that the economic interests of
the company conform to the economic interests of the consumers.

Further, let the economic interests of the company conform to those of the consumers
and z* be the optimal solution of (1), (2) and (3). In accordance with Theorem 2 in
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this case decomposition (10) takes place. It is obvious that (10) may be interpreted
in the following way: if the volume of resource : increases by one unit, the profit of
the company rises by u! units. Furthermore, y; units of them are created by more
intensive production, whereas Q(z*)v] units by more extensive production, where
v} i1s the output increase.

This decomposition may prove to be useful if scarce resources are distributed among
producers in a centralized way. Indeed, let us suppose that the company has made a
request to be allocated certain extra units of the i-th resource. From the customers
point of view it would be reasonable to satisfy the request if and only if v} > 0
because it is the very case when the use of an additional volume of the :-th resource
brings about an extra output of the scarce product.

Another way of using (10) is to use Q(z*)v; as extra charge for an extra unit of the
i-th resource. Indeed, in this case if the use of an extra unit of the :-th resource
does not lead to an increase in efficiency and y7 = 0 then the extra profit of the
company is equal to zero, too. It means that these extra charges will create an
interest in increasing the use primarily of a resource, whose index i, is defined from
the equation

o .
1o = ind max y;
1<i<m

since in this case the extra profit is the largest. So if these extra charges have been
introduced into practice they will be favourable for the intensification of production.
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GULF is a simple to use but powerful, menu driven linear-fractional programming
(LFP) and linear programming (LP) package for IBM compatible MS-DOS micro-
computers with minimum of 256K RAM and one floppy disk drive.

The LFP problem solvable by the program may be written as follows

_ Pz) i piTi+po

T)= = ~— max({min), 1
U= Da) = T gz, 4 g~ ™ m
subject to
200
> age; S (2=, i=1,2,...,150, (2)

z; >0, j=12,...,200, (3)

where denominator D(z) # 0for allz € S. S is feasible set defined by the constraints
(2) and (3).

GULF is centered around a spreadsheed styled editor which is used to enter or edit
an existing problem. It operates similarly to an electronic spreadsheet program,
such as Lotus 1-2-3, Quatro Pro or Excel. The commands are available through
the slash (/) key. The user may use several commands, among which the Calculate
command is to calculate the optimal solution. After calculating, GULF prints the
optimal solution, retrieves the data file and returns to the editor.

The program is called by typing GULF [Return]. A spreadsheet represantation
immediately appears, in the following format :
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Gulf Limit Coll Col2 Col3 Col4 Col5 Col6
Obj.Numer N

Obj.Denom N 1.00

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 15
Row 16
Row 17
Row 18
Row 19
GULF v2.2 Row=-1 Col=0 Aim=MAX File=C:\DEFAULT.GLF

Type < / > for commands

ol ol ol el e S el < i on  on vl ol wn B il ol e andl on)

The upper-left position is reserved for the problem name, which you may modify
at will, as well as any of the spreadsheet position. The number 1.00 in the "Limit”
column of the "Obj.Denom” row and 0.00 in the other columns of the row (zeros
are blanked) are the default values of the objective function denominator’s constant
term and coeflicients respectively. If you retain these default values, GULF solves a
standart LP problem using the objective function coefficients in the "Obj.Numer”
row. To solve a LFP problem, the "Limit” value of the "Obj.Denom” row must
be changed to a value other than 1.00 and/or other coefficients of the row must be
changed to values other than zero.

A spreadsheet styled data editor includes a full range of editing functions, is menu
driven, has a help facility and gives informative error messages. There is a first level
with the Calculate (solves LFP or LP problem) command, the Help (it leads the
user to 4 help screens), the Alter command for modifying the default parameters,
the File command for file operations, the Print command, the Quit command, and
a [Tab] command (which can also be reached directly from the editor) which leads
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to matrix operations (Delete row or column, Insert, Copy, etc.).

To solve a LP or LFP problem GULF uses well known simplex algorithm {1}, |2]. The
user has the choice between two solution methods : the simple steepest ascent and
the highest step [3] pivot selection. The second method involves longer iterations.
but may result in less steps. The package includes an ideal feature for those who arc
learning about simplex method : the facility to drop back into the editer to view
the matrix after each iteration.

The optimal solution and/or problem matrix can be printed on the screen, on a
printer or into a text file on disk. Qutput includes levels, slacks, shadow costs and
prices and range analysis, each of which can optionally be suppressed. After printing
output, GULF returns to the editor and you can continue making any changes to
the matrix.

Standart MPS data format is used, so data can be exchanged with other LP packages
on mainframe or micro. It is possible to write your own data entry program which
interfaces directly with GULF’s solving algorithm, bypassing the data editor.

With a 256K RAM memory, the maximum size is 120 nonnegative variables and
80 constraints. This maximum size increases to 200 nonnegative variables and 15¢
constraints if you have 384K or more RAM. There is no minimum disk size required
as GULF takes up only about 100K of disk space. GULF is not copy protected.
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We describe the results of a two-year research and development project in the area of
graph-based modeling. The project was funded by a consortium of six industrial sponsors and
was carried out by Chesapeake Decision Sciences, a small U.S. company that specializes in the
development of state-of-the-art software in the area of planning and scheduling.

The graph-based modeling developments served as an extension of the existing MIMI (Manager
for Interactive Modeling Interfaces) system which provides operations research, expert system,
interactive graphics, and database capabilities for the solution of complex industrial planning
and scheduling problems. Thus, the graph-based modeling features (MIMI/G) are intended to
provide support for all aspects of the MIMI system including mathematical programming model
management and solution analysis. As opposed to programming specialized windowed inter-
faces, we set out to provide a generic graph-based modeling language to enable end users to
create new interfaces in a few seconds.

Graph-based modeling in MIMI/G uses a node/edge paradigm in which graph attributes are
associated directly with structures and data in the MIMI database. The MIMI database consists
of sets (ordered lists) and tables (defined on sets) and supports both hierarchical and relational
data models. Graph nodes are generally associated with objects or entries in MIMI sets. Graph
edges are usually associated with relations or entries in MIMI tables. Graph attributes (e.g.,
node position, node size, node color, edge width, edge color, etc.) are associated with values in
MIMI tables.

Ypos

Xpos|

Graph Attributes
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Relations defined on special MIMI sets (called graph sets) are used to specify the mapping of
database elements into graph attributes. The GRAPH command, operating on graph sets,
generates the graph in the X Window environment. Once generated, graphs represent a
one-to-one relationship with the underlying data; a change to the graph changes the data and
vice versa. Adding or deleting nodes in a graph add or delete the set entries in the MIMI
database. Adding or deleting edges add or delete entries in MIMI tables. Thus, the graphs
themselves become a natural user interface.

Each node and edge in a graph has a domain defined by the sets and set entries associated with
the node or edge. If the nodes in a graph were generated as the entries in a particular set, then
the domain of each node can be as simple as a tuplet listing the defining set and the entry
associated with each node. However, the nodes in many graphs are defined on complex domains
represented by several tuplets of defining sets and set entries.

In general, graphs are generated for a large variety of domains but displayed selectively only for
a few domains. The manipulation of the domains that define which portions of the graph to
display and which to hide is called graph navigation. Since the graphs in industrial applications
are generally quite large (with hundreds or even thousands of nodes and edges), efficient graph
navigation is key to the success of MIMI's graph-based modeling development efforts.

For example, we might choose to generate a graph of a large portion of an LP matrix with nodes
defined as matrix columns from set MAC and matrix rows from set MAR. Edges would
represent nonzero matrix elements from the sparse table MATX(MAR,MAC). Each matrix
column also has a domain associated with the meaning of the column in physical terms-blending
activity, time period 1, product PA, location BR, etc. These domains are also associated with
the node representing the matrix column so that we can navigate the matrix graph by specifying
a filter of partial domains for display.

';j‘Jlm‘ﬂ‘i;;:l'zhii'L:‘hif::;.‘zi‘il;::‘:rliﬂi.‘;‘.‘.‘;{i.'lf;m [TV TORT] e ; GwiTx R RN A e A T TIPSR RO O TR S
H Ftle Edit View Options

PNy .
r .
T /
0.00 38,70

ColSet: SLPCOL
COEF- | EXPLODED
FICTENT |VALUE

-1.00| -120.00|

-62.36| -7483, 20)

-10.82| -1298.20)

~0.04] -4.22

-0.75] -89.46)




26

Graph nodes are treated as objects in the object-oriented programming sense. When the user
selects a node with the left or right mouse button, the graph tells the MIMI database the domain
(of the node) the user has selected. MIMI macros or rules can be linked to nodes so that they
will be run or fired upon mouse selection. Nodes can also be associated with additional data
structures called frames which will pop up editable windows focused on the current domain of
interest with selection with the right-mouse button.

The MIMI database supports inheritance and so does the frame feature associated with the
right mouse button. Any text selected by the right mouse button is referenced through MIMI’s
database structures to present a window with the correct data (perhaps inherited) focused on
the active domain of interest.

Node and edge shapes can be selected from a list of standard shapes or from external pixmaps
supplied by the user. Thus, graphs can also be used to create icon-style interfaces for mouse
selection. Pixmaps can also be imported as background (e.g. maps, plant layouts) for superim-
posing graph structures related to data.

Quite often, the xy positions of graph nodes are related to data in the MIMI database; however,
in some cases we would like the x,y positions of the nodes to be controlled by edge relationships.
For these graphs, MIMI/G contains six layout routines which can be specified as part of the
graph set definition.

Node/edge relationships in graphs often reveal structure at a glance. However, they also
provide a natural interface for delving into the MIMI database along the lines indicated by the
mouse selection of the user in an intuitive form.

The visualization of relations and data structures provides insight in many novel forms. Ob-
viously, many physical problems have natural graphical interpretations, and we would expect
that it would be easy to represent the data structures describing these problems in a graph-based
modeling form. In all cases in which we found the specification of a graph set difficult for a
natural problem, upon examination we found that the data structure representing the problem
to be inefficient or unnatural-an observation which had escaped us prior to graphical visualiza-
tion.

The graph-based modeling language in MIMI/G is quite simple to learn and to use. Many graphs
can be specified with a few lines that relate graph attributes to database structures. MIMI/G
facilitates the modeling process by allowing classes of graphs to be defined and by allowing other
graphs to inherit their properties. Thus, neophyte users are able to specify new graphs on the
basis of a collection of example graphs without completely understanding the process. Never-
theless, the ability to develop novel applications of graph-based modeling seems to be limited
to a few—probably the same small subset of people who are good at modeling in general.

Since the MIMI/G development is new, our observation of users is limited. HoMr, initial
results indicate that there is a high degree of acceptance of the graph-based interfaces among
model developers and end users alike.
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Karmarkar'’s algorithﬁ {Karmarkar 1984) and other interior
point methods are now regarded as a competitive methods for
solving linear programming (LP) problems. It is therefore
worth-while to undertake development of a professional LP
software based on some particular interior point method. We
describe design and implementation aspects of LPINT, an LP
software package which is based on the primal-dual interior
point algorithm. Its main characteristics can be stated as
follows:

- high performance is assured by using state of the art
algorithms (Lustig et al. 1991, Mehrotra 1991, Altman,
Gondzio 1992) and recent results in sparse matrix research
(George, Liu 1981, Duff et al. 1989).

- the overall system design is influenced by proven systems
which are based on the simplex method (Suhl 1989). It is
also very important to follow the methods and principles
of contemporary software engineering. For example, it is
desirable to attain a high degree of portability. We also
emphasize the need for modularity, ease of use and other

software qualities. Our goal was to obtain these qualities
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without abandoning the usage of standard form PC user
interface (pop~-up and pull-down menus, windows etc.)

- two levels of use are provided: 1. interactive menu driven

use,
2. as a library of fortran subroutines which are driven by
the user program
- LPINT was extensively tested using the so called NETLIB
library of LP test problems (Gay 1985).
At each step of the primal-dual interior point it is neces-
sary to solve the presumably sparse linear least square
problem. It is generally accepted that, if problem dimension
is not very big, the normal equations approach using sparse
Cholesky factorization (George, Liu 1981) is an adequate
method. The rows and columns of the normal equations matrix
must be preordered in order to exploit sparsity. We have
implemented the following methods for doing this: 1. Minimal
degree algorithm (usually the most efficient method), 2.
Nested dissection method (uses the same data structure as
minimal degree algorithm, but it is less efficient in ex-
ploitation of sparsity when LP problems are considered), 3.
Reverse Cuthill-McKee algorithm (a standard profile method
which proved to be more efficient than minimum degree algo-
rithm on some rare cases, but otherwise its performance is
poor), 4. Modified Levy algorithm (an alternative profile
method (Billionnet, Breteau 1989)). Among other algorithmic

techniques implemented within LPINT we can mention splitting
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dense columns (Gondzio 1991). In general, our goal was not
to invent new algorithms but to enable making different
comparisons as a starting point for further investigation of
the algorithms and LP m;trices. Perhaps the most distin-
guished components of LPINT are different tools for graphi-
cal display of LP constraint matrices and corresponding
normal equation matrices. A visualization of these matrices
could be particularly helpful when one must decide about
efficient solution strategy and possible decomposition of
the LP model. Our ultimate goal, which is not yet fully
achieved is to create an open software environment for
handling and analysing different sparse matrices (Alvarado
1990) which is to be specialized for LP matrices. We believe
that all mentioned features make LPINT a valuable tool for

postgraduate education and research in the field of LP.

> user program external files
configuration
options
Common data screens
solution
LPINT optimizer (with (—> iteration log
chosen options) MPS data
other data formats
Interactive problem file
interface: messages
—) =z==z====z==z==3 GRAPHICAL reports
windows Subroutine
pop-up menus Library
pull-down ( INTERACTER)

menus

LPINT system architecture
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LPINT is currently implemented only on the PC, but the usage
of portable graphical subroutine library (Interacter 1991)

makes possible its porting to other software and hardware

platforms.
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In previous works we designed a general method for linear diophantine constraint satisfaction
problem -denoted by FAST (Fast Algorithm for the constraint Satisfaction Testing)- which allows to
prove the existence or not of a solution for a system of constraints over a finite domain.

Namely, the system has the following canonical type :

(S) Ax<b: x € D, D discrete and finite
(all the components of the vector b and each coefficient of the matrix A are integer numbers).

This problem arises in several applications in computer science, namely in Artificial Intelligence
area (such that : logical inference and SAT problems, regular problems (pigeon, queen, puzzie....,
and for constraint logic programming), and in automatic vectorization of programs.

The main characteristics of our method is the solving of a sequence (very short in practice) of
integer programming problems. Each generic problem of this sequence has an appropriate objective
function and a constraint system size lower than the initial system one (very much lower in practice).

The algorithm starts from an initial vector x{ in D. Let us denote

L the subset of the m constraints of (S) already satisfied (e.g. Aix0 < b; i€L)
and

G the subset of the other constraints (e.g. Aix0 > b; i €G).
From this starting point x0, algorithm FAST generates a finite sequence of k integer vectors x!,
x2, x3...., xk in D, until either xK satisfies the system of constraints (S), or the associated domain

(F(S)={x € DI Ax £ b} ) is proved to be empty.

Namely, given an element x" of the sequence which is not a solution of (S) (with h < k-1), by
denoting again
L the subset of the m constraints of (S) alfeady satisfied (e.g. AixP <b; ieL)
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and
G the subset of the other constraints (¢. g. Aix" > b; i € G),

the next integer vector x* (e.g. xh*1 ) is obtained by solving (or partially solving) the following
integer linear programming problem

(P) min f(x)
st. Ajx<¢by i1el
xeD

where f(x) is a positive linear combination of the (Aix)ie G :

f(x)= Yo Aix ,;20 foralliinG.
ieG

The number of iterations of our method is bounded by the number of contraints of the initial
system, but at each iteration a NP-complete integer programming problem is solved exactly or
approximately.

We propose to describe a specific version of algorithm FAST -denoted BFAST- devoted to the
exact solution of linear boolean constraint satisfaction problems., e.g. with a system of this type

(BS) Ax 2b; xe {0,1}N

As a matter of fact, it is well known that a propositional logic clause can be written as a 0-1 linear
inequality in the following way :

the clause
Vv Vv 13vy
is equivalent to the diophantine constraint

x1+( 1-x2)+(1-x3)+x4 2 1, with xj in {0,1], i=1,....4.

This means that each x;is a mathematical variable rather than a proposition and is interpreted as
having the numerical value 1 when the proposition t; is true and O when t; is false. The numerical
inequality asserts that at least one of the fourth literals is true.

Thus a set of clauses can be written as a system (BS) corresponding to a generalized covering
problem : all the components of the right-hand side b of the constraints are integer numbers, and each
coefficient of the left-hand side A of the constraints belongs to {-1, 0, 1}), each row of which
corresponds to a clause.

Important typical applications are the inference problem in propositional logic, and deductive
databases.

Although this constraint satisfaction problem associated with (BS) is NP-complete, it is possibie
to design efficient exact methods for several class of such instances. Recently Hooker has obtained
good results using 0-1programming tools : his method consists in adding an objective function to the
constraint system (B ' order to solve an equivalent O-1 programming problem by a branch and cut
method .
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The associated computational experiments show clearly that his algorithm is largely as fast as the
classical previous symbolics methods (set of support resolution, Davis-Putnam's procedure, ...) for
logical inference problems.

Our BFAST algorithm solves a sequence of 0-1 programming problems (obtained by adding an
objective function to subsystems of (S)). The solution of each generic 0-1 problem is obtained by a
branch and bound method including heuristics, relaxations and reduction procedures.

The associated C code has been implemented on a SUN 3/160 computer with a lot of instances
with a generalized covenng type
Ax 2 b; x €{0,1}1
with A € {0,1,-1)MXR apnd b e ZM
randomly generated with the Purdom and Brown model. Each clause is randomly and independently
generated: each literal has the same probability; each clause includes distinct literals.

The computational experiments show the efficiency of our method BFAST.
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Abstract: The problem of bounding the expected value of the objective
function in a stochastic program can be of interest in its own right (for
example finding the expected project duration time in a stochastic PERT
network) or it can be a part of a larger setting such as for example a two-
stage stochastic program. We consider a general LP of the form: Find
the expected value of @), where @ is given by

Q=) min{qy | Wy =wi, y > 0}p;

where we view w; as the ¢'th realization of a random variable w, with p;
being the probability that & = w;. Finding the exact value of @ is hard
expect for very small problems. However, for general LPs there exist
different approaches for bounding @, such as the Jensen lower bound and
the Edmundson-Madansky upper bound. Whichever bound is used, one
will often experience that the bounds are not tight enough according to
some chosen rule. A natural possibility is then to partition the support
of w and then find conditional bounds on each cell of the partition.

In this paper we discuss different ways of partitioning the support. It is
fairly obvious that one will always partition the cells(s) with the largest
error (where error is measured as the difference between the upper and
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lower bound multiplied by the probability associated with the cell). How-
ever, given a cell, one must decide how to do it. Due to the difficulty of
finding conditional expectations over anything but rectangles we immedi-
ately decided to consider only partitions that affect one random variable
at a time. Also, after some preliminary testing, we decided to split a
cell in the middle, i.e. as close to the midpoint between the minimal and
maximal value as possible. Of course, one could also have chosen the
mean or median. Our computations indicate that that is less useful, but
that the difference is not substantial.

However, our main issue is to understand better which dimension (ran-
dom variable) to partition on. Our results indicate very clearly that
picking the correct dimension is crucial. This is perhaps best understood
if we for a moment assume that we introduce a random variable that
does not show up anywhere in the LP. If we chose to split on this ran-
dom variable, the bounds will remain unchanged, but we now have two
cells, each as difficult as the first one. Hence, we must bring both cells
down to an acceptable error and this is basically twice as hard as bringing
the error associated with the original cell down. In other words, picking
an incorrect random variable has doubled our workload. Of course, we
never have such random variables in a problem. But we will often have
random variables that are totally uniteresting (for example the duration
of an activity in a PERT network which is such that irrespective of the
value taken by this random variable the activity is never critical). The
problem with an incorrect choice is that we never recover from it. With a
totally useless partition, the remaining workload associated with the cell
in question basically doubles, and that cannot be offset later on.

Given this important observation we discuss a number of basic approaches
to the question of how to pick the right random variable. These basic
approaches are combined with different shortcuts. For example, if we
foresee that a given partition will cause one of the resulting new cells
to immediately satisfy the error bounds, we chose this partition without
further testing.

The talk will outline these approaches and present numerical results. We
demonstrate that bad choices can increase the workload several orders of
magnitude.




Scheduling multiprocessor tasks

on a dynamic configuration
of dedicated processors
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Extended abstract

One of the commonly imposed assumptions in the classical sheduling theory
is that any task is processed by one processor at a time [10, 1]. With the
development of technology, parallel systems and parallel algorithms this as-
sumption is not so obvious. For example consider a fault tolerant system in
which several processors test each other [13] or a testing system in which one
processor stimulates the tested object and the other processor is analysing
its output. Another range of applications appears in the field of new parallel
algorithms and corresponding tasks systems.

In recent years several papers dealt with a problem in which a task re-
quires more than one processor simultaneously. Two groups of models have
been distinguished. In the first group of models it is assumed that any task
can be executed on any set of processors under the condition that a fixed
number of processors is assigned to the task [6, 11, 7, 9, 15]. There are three
models in this group [16]: in the model called "size;” a task requires a fixed
number of processors simultaneously [6, 7]; in the model "cube;” a task re-
quires a number of processors which is a power of 2 (eg. either 1 or 2 or 4
etc. processors) [9, 15]; in the model "any” each task can be executed on
any subset of the processors but the execution speed depends on the number
of processors processing the task |11, 17}.

In the second group of models it is assumed that the number of processors
is not important, but the set of processors processing a task [14, 3, 5]. This

*Instituto di Analisi dei Sistemi ed Informatica del C.N.R., Rome,ltaly.
tInstytut Informatyki Politechniki Poznatiskiej, Poznan, Poland. The research was
partially supported by the grant KBN-302279101 and by project CRIT.
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problem is similar to classical scheduling with additional resources [8] and can
be expressed in terms of weighted graph colouring ({14]. There are two models
of in this group. These are: model ” fiz;” where a task can be executed by
a fixed set of processors {14, 3, 5] and model "set;" in which each task has a
set of alternative sets of processors by which it can be processed.

In this paper we will concentrate on the model "set;” which is a gener-
alization of the model " fiz;". Before presenting results we will set up the
problem more formally.

We are given set T of n tasks and set P of m dedicated processors. Each
task T; requires for its processing a set of processors D; simultaneously from
Is;!
a set S; of such sets (ie. S; = UD(). We will call these D sets processing
=1
modes or processing configurations of task Tj.

A processing time of a task may depend on the set of processors processing
it. We assume that processing times of tasks are given in the matrix:

X:{tﬁJ i t? ‘ € R* is a processing time of task T in processing mode 2
requiring a set of processors D;; if Ty cannot be scheduled in this mode then
t_? =400}

Tasks are independent. We will analyze preemptable and nonpreemptable
task cases. In case of preemptable tasks any task can be at no cost interrupted
and restarted later probably in different processing mode. In this case we also
assume that processing percentages of tasks processed in various processing
modes are “additive” or in other words can be accumulated. For example
if some task has been processed 1 second in processing mode A while the
total processing time for this task in this mode is 10 seconds, then the task
is processed in 10%. If next, this task has been processed in additional 20%
in some other processing mode then it is processed in 30%. After restarting
in the processing mode A this task will occupy processors appropriate in this
mode in 7 seconds. This approach is similar to the case of scheduling on
unrelated machines or scheduling under resource requirements [4].

An optimality criterion is schedule length (Cmas)-

To depote analyzed.problems we will use an extended version of the
scheme proposed by Graham, Lawler, Lenstra and Rinnoy Kan [12] with
later extensions [8, 16]). In this notation a scheduling problem is described
by three flelds. The first field describes processor system. In this work it will
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be letter P optionally followed by positive integer which denotes the number
of processors. If there is no constant after P then the number of processors
is not fixed and is given in the current instance of the problem. The second
field describes the task system. Word "pmtn” is used to denote that tasks are
preemptable, if this word is absent tasks are nonpreemptable. Word " set;”
denotes simultaneous requirement of multiple processors by tasks. More-
over in general any task can be processed by more than ¢ : such a set of
processors. The last field denotes the optimality criterion, it 1s Cmaz-

In the paper we will present a dynamic programming based procedure to
solve optimally simple cases of the nonpreemptive version of the problem.
This will result in pseudopolynomial algorithms. For a general case of the
nonpreemptive scheduling a heuristic will be proposed and its worst case
behavior will be analyzed. The preemptive version of the problem will be
solved via linear programming. The organization of the paper is as follows.
In section 2 the case of nonpreemptive scheduling is considered. In section 3
the preemptive version of the problem is solved.

Nonpreemptive Scheduling

In general the problem P| set; | Cmaz is NP-hard. This can be easily shown
by a reduction from the set partition problem to problem P2| set; | Cmaz-
For three processors and tasks requiring processors from only one set the
problem is NP-hard in the strong sense [5]. Thus, it is unlikely to propose
an algorithm solving these problems in polynomial time. Moreover, for more
than two processors it is hard to expect pseudo-polynomial time algorithm.

In this section we will present pseudo-polynomial time algorithms for
problems P2| set; | Crmaz and a restricted version of the problem P3| set; |
Cimaz, respectively. Then a simple heuristic for the problem P| set; | Cmas
with the worst case behavior bound equal to m, will be presented.

Preemptive Scheduling

In this section we will analyze the problem P| set;,pmtn | Cmaz. In general
(when the number of processors is unbounded), the problem in question is
NP-hard in the strong sense [2]. For a limited number of processors however,
this problem can be solved in polynomial time using linear programming
procedure.
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Abstract

The population of parallel genetic algorithms (PGAs) can easily be split up
to match the needs of a coarse grained parallelism. A cluster of interconnected
workstations, seen as an MIMD-architecture, is the chosen hardware to express
this kind of parallelism. A PGA implementation, as any other parallel algorithm,
is bound to an execution environment, giving sustained support for its realization.
Our execution environment, called PARNET, is constructed as a distributed
server referred to as base layer. The next higher level of abstraction is provided
by the object oriented interface layer, allowing to construct the PGA layer on top
of both. We introduce the PARNET conception, leading from the single machine
operating environment to the distributed realization of a PGA.

1 Introduction

Genetic algorithms belong to a class of optimization strategies, which can be imple-
mented most efficiently on MIMD-architectures. A PGA population matches the needs
of a coarse grained parallelism for efficient, almost asynchronous processing [1].

The realization in a cluster of interconnected workstations must be supported by an
execution environment, providing the necessary abstraction of the interconnecting net-
work. While distributed operating systems like Helios provide and prescribe a spe-
cialized support for distributed computing in general, and therefore allow a kind of
abstraction from single processing nodes, this support is missed on a network of gen-
eral purpose workstations. In this context facilities like remote procedure calls and
remote execution can only be seen as a basic access to the potential summable com-
putational power of a workstation cluster.

The PARNET computation environment is an approach to provide better access to
the overall computation power in distributed environments. Needed administration
for distributed objects can be done on a per application base, instead of the operating

*This research project is supported by the Deutsche Forschungs-Gemeinschaft
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system level. So the PARNET functionality is a subset of what could be expected from
a distributed operating system. Typical problems of these systems can be avoided or
at least alleviated and implemented more efficiently.

2 PARNET -

2.1 Overall Structure

The overall structure of PARNET is a per application distributed server. The parts
of this server are constructed following the layer-model shown in figure 1. In each
processing node, there is at least one part of the server running. The base layer han-
dles main topics of abstraction from the network environment and provides low level
message passing and semaphore based synchronization crossing the machine bound-
aries. The application programmer can use the base layer interface directly or rely on
the next abstraction level, provided by the interface layer. This layer provides more
complex synchronization features in an object oriented fashion. Build on top of this
layer some framework for implementing parallel algorithms is provided. Here we show
a PGA-layer matching the needs for coarse grained parallel processing of genetc al-
gorithms. But it may be for example exchanged by another layer, e. g. supporting a
general framework for event driven simulation.

PGA Layer
Interface Layer
Base Layer

Figure 1: PARNET layer model

The implementation is built on the widely accepted programming model of multi-
threaded tasks, available on state of the art operating systems (i.e. Mach, Solaris 2.x,
Helios) together with a high reliable communication facility (TCP/IP, Helios message
passing) [5]. The thread programming model must at least provide a fork() call to
start threads and binary semaphore operations (P(), V() or Signal(), Wait()).

2.2 Base-Layer

Providing a flexible and extensible base environment leads to the main functionality of
the base layer:

initial booting from the local workstation,

crash detection for remote computing nodes,

hierarchical organized naming scheme for several kinds of objects,
efficient message transfers by building optimal sized data packets,
dynamic creation of name addressable communication ports.




43

To operate on a per application base, the PARNET environment is bound to the
application itself and spreads out beginning from the local machine. Because of this
mechanism an errorness application can only crash down itself, whereas a system service
like implementation may affect further applications directly or indirectly.

A minimal necessary support for distributed applications is a crash detection facility.
Any desirable crash recovery is at least somehow coupled with the application, or leads
to a specialized parallelization paradigm, for which the problem of recalling a past state
can be solved efficiently. Because we will not concentrate on a specialized parallelization
method in the base layer, we support crash detection and following shutdown of the
application.

For naming and addressing of distributed objects in PARNET, we provide a hierar-
chical name space. Again we benefit from the per application approach in PARNET.
It is obvious, that an application can trust itself, and therefore no access control or
authorization is needed. The object name-tree is distributed between the server parts,
allowing local interpretation per context. A caching strategy is used to avoid unneces-
sary commmunication requests in searching objects (locate()). Figure 2 shows a snapshot
of a typical name space. Terms in quotation marks denote user created objects, which
may be functions, classes and their methods, mail-ports and further object names.

classes ——————— “individual” ———— “genelsc methods”
00 functions ————— “accessable functions”
Scylla
B mail-ports “mazil-port names”
Root — 01 _Email-ports e

semaphores: - -
classes. - .

— Charybdis -—OO‘Efunctions e

mail-ports - - -

Figure 2: PARNET name space

The addressing of any object in PARNET is based on this naming-scheme. As an
example, if we address data to "/scylla/01/functions/beep”, on host "scylla”, server-
part "01”, a function beep is called.

Addressing data to "mail-port/incoming.data” will search for a mail-port with the
name "incoming.data” first in the local context and second in a remote context. The
first occurrence of the name is the address the data will be delivered to.

Although communication shows to be still the bottleneck in most distributed applica-
tions, some afford can be done, to alleviate this fact (8).In our multithreaded implemen-
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tation there is a sending thread for data communication to each remote server-part.
So sending data occurs only if this thread is actually executing. It is a quite natural
approach to pack together as many messages as currently available in order to have a
good chance to achieve efficient transfer rates.

Traditionally only static structures for communication are realized in distributed ap-
plications. This fact is normally imposed by the underlying support-tool (Interface
Description Language (RPC), or Component Distribution Language — Helios). Hence
dynamic creation of communication ports is an unusual feature, allowing to send data
to mail-ports which are not created so far and assuming, that the addressed mail-port
will be created in near future. There are several situations where this may simplify the
application code and avoids explicit synchronization, before starting to communicate.

2.3 Interface Layer

Object oriented programming has proved to be a worthy software engineering approach.
An object is described by a class defining a data type for which access to data is
restricted to a specific set of access functions. The PARNET base layer is designed to
handle a wide range of parallel distributed applications. Hence access at the abstraction
level of the base layer is indispensable. Interface classes are used to provide access to the
PARNET base layer at a higher level of well known concepts of parallel programming.

The PARNET interface layer uses the model of invoking objects remotely to provide
access to remote data and control of remote threads. Application data can be declared
as a class and can be handled as an object thereafter. Threads of coarse grained
parallelity are defined as a set of member functions of a class. Access to remote objects
is provided via numeric object identifiers.

The idea of using classes leads to the object oriented model of inheritance, which is
extensively used in the PARNET interface. A subclass can be derived from its base
class, while the properties of the base class are inherited to the subclass. Inheritance
is used to gain access to the base layer at different levels of well known programming
concepts. The level of abstraction grows analogous to class tree inheritance. Access is
permitted at any level of abstraction. Calling a meaningful operation on application
level forces the processing of a unique chain of arbitrary operations along the directed
graph of the interface class hierarchy.

Let us consider a simple example. At a low level of abstraction a locking primitive is
provided by the PARNET base layer. The class Monitor is derived from Locking and
provides a Hoare monitor using the inherited properties from Locking. In a next step
Monitor inherits its functionality to Semaphore, which builds a counting semaphore
using Monitor methods. In a last step Fifo Semaphore is derived from Semaphore,
using a couple of semaphores to construct the Fifo behavior. '

Figure 3 introduces the simplified PARNET interface hierarchy of derived classes. Base
classes (appear in roman characters) are wrappers around the PARNET base layer.
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St Consistency — . Wri
Shared Memory—-[ rong Consistency Reader-Writer
Weak Consistency

— Message
Fifo Central debug
Queue ———[
- Lifo
_E Synchronous
— Thread Asynchronous Topology
Parnet —
Barrier
. Condition
— Locking
Monitor —————— Semaphore ——————— Fifo Semaphore
Cpu
- Info Network—————— Machine———-[
Server ——————— Thread

Figure 3: The PARNET interface hierarchy

These abstract classes cannot be used by the application programmer. They are base
classes from which user classes at a higher level of abstraction are derived (appear in
emphasized characters).

Four base classes represent the functionality of the PARNET base layer. The Message
class derives two more base classes, which provide different communication interfaces
to the programmer. Different kinds of Queues are provided as well as a distributed
virtual Shared Memory. Above the latter class well known communication patterns like
single-writer-multiple-reader can be built using the Semaphore class. Threads may be
spawned in a Synchronous or in an Asynchronous way; a kind of processor group facility
is provided by the Topology class. The Locking base class inherits its functionality
to Barrier, Condition, and Monitor. These classes are used to synchronize threads.

To enable threads to react on the network computing environment, an Info class is
provided.

The program development of parallel applications is simplified by the usage of shared
memory in comparison to message passing. A drawback using shared memory in a
distributed environment is the relatively slow communication medium (e. g. ethernet).
The PARNET interface provides features to take decisions on the distribution, protec-
tion and consistency of shared data to minimize the base layer network traffic.

Using this interface non trivial distributed parallel applications can be built, whose
complexity regarding control and communication patterns surpasses usual remote pro-
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cedure calls. Once invoked, threads may have ”a life of their own” communicating with
other threads without the need of a central instance. This is an important demand for
using the interface by Parallel Genetic Algorithms.

2.4 A PGA Layer

A PGA application can be characterized by the following issues: All evolved threads
perform the same non trivial procedure of iterations. No update of systemwide infor-
mation has to be done frequently. Instead, global information is either readonly or rare
and of weak consistency condition. Most steps of execution can be done using local
data, which is private to each thread.

class individual derived from Parnet // Class uses PARNET interface
shared data my_solution // My own solution
shared data all_neighbors // Other solutions I know
virtual function terminate // Members to be declared in

. // derived classes
virtual function accept

function main // The predefined GA interface
while not terminate ()
selected_neighbor = select (all_neighbors)
temp_solution = crossover (my_solution, selected_neighbor)
temp_solution = mutation (temp_solution)
temp_solution = local-opt (temp_solution)
if accept (temp_solution, all_neighbors)
my_solution = temp_solution
end while
end function
end class

Figure 4: An abstract PGA interface class using virtual functions

In the following the pseudo code of a GA thread class is presented as an example for the
implementation of user interface classes. Figure 4 shows an abstract class /ndividual,
which is derived from several PARNET interface classes to provide remote facilities.
The shared data represents the current solution in the process of iteration and the
access to the solutions of other executing individuals. Write access is permitted to
my_solution, which may be updated by the individual. The access to all_neighbors is
protected by a readonly constraint.

Apart from shared data, there is only one member function main defined. This is the
loop called at invocation time by the thread class. It contains the skeleton of a generic
PGA [6]. For a number of iterations defined by terminate the function select chooses a
suitable partner for its recombination. The crossover operator recombines the genetic
code of the current solution with the selected neighbor to a new (temporary) solution.
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class my_individual derived from individual
virtual function terminate
body of function ... // Detine the implementation to be
end function // executed in the interface method main

virtual function accept -~
body of function ...
end function
end class

Figure 5: A user defined PGA class

Mutation and local-opt are optional operations on the new solution. The accept oper-
ation compares the recombined new data with the solutions of the neighborhood and
indicates whether the old solution is to be overwritten by the new one. Otherwise the
new solution could not dominate the older one and is discharged immediately. In the
case of overwriting, the new solution is forwarded to the individuals being neighbors
to the one we looked at.

No object of individual can be invoked. Instead, the abstract class inherits its interface
to a user defined class. This user defined class is responsible for the implementation
of the functions declared virtual in the base class. Figure 5 shows an implementation
class derived from individual, defining the details of the PGA operations used by the
interface class.

program
topology<my_individual> population // Declare a topology of threads

population.number(32) // Detine the number of individuals

population.exec() // asynchronous start of remote threads

population.wait() // Wait for termination of all threads
end program

Figure 6: An program example using the PGA interface

Figure 6 gives a program example of the above described iaterface. A topology of
individuals is defined within the population object. The member function number is
called to determine the size of the population. The ezec member invokes 32 remote
individuals asynchronously. The wait member blocks until all individuals terminate.
The called member functions are defined in base classes at different levels of abstraction.

The definition of the methods, introduced in figure 6, are derived from PARNET
classes. A review to figure 3 may help making the class interdependencies more trans-
parent. The method ezec lives in class Thread, while wait is defined in class Asyn-
chronous and numbe: is a member of class topology. The resulting source code repre-
sents the structure of the program in a obvious way hiding the details of networking.
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3 Conclusion

We presented the PARNET approach, leading from single machine computing envi-
ronments to a realization of a distributed application environment in a workstation
cluster. The object oriented approach fits best the coarse grained parallelism we wish
to realize. Following these approaches a framework for parallel genetic algorithms has
been introduced.

Well known network facilities, socket based communication, remote execution and re-
mote procedure calls do not provide the desired programming support. A specialized
distributed operating system is missing the desired robustness for carrying out ev-
erydays work [2]. The PARNET approach situated above the base operation system
pursues a per application environment to avoid or at least alleviate typical problems
of distributed computing.

The PARNET idea has not been the only approach until now. A programming tool,
called PVM, with little different goals and a more different conception has recently
become available [3]. Some other related work concentrate on the object oriented
interfacing (2],{7],{4]. Some affords were made to hide nearly any distribution. Qur
work is more reflected by hiding hard to use details of networks and provide the ability
to visibly express distribution.
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The purpose of this paper is the description of a system that, while fully exploiting and
integrating the advanced features of the Microsott Excel commercial spreadsheet
sottware and Hewiett-Packard's NewWave otfice environment, extends them with new
optimisation and mulitiple criteria group decision model building capabilities.

The new features include a meta-model building language which allows the automatic
generation of a class of mathematical programming spreadsheet models dynamically
linked to public and private databases. These models can immediately be used for both
intuitive experimentation and optimisation. Figure 1 shows a sample model.
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An archiving tool allows the user to save and later retrieve any given state of the
model together with a freely selectable set of characteristic indicators. The indicators
belonging to different saved states of the model can be easily compared using graphical
charts. Figure 2 shows the chart used to compare the saved states.
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The system works in both the Apple Macintosh and the Microsoft Windows
environments. Its functionality is significantly enhanced with inter application
communication and dynamic data exchange tools that we extended beyond the built in
capabilities of the commercial environments to computers connected by a network.
The optimisation and multiple criteria decision making can in this way be performed in
an environment where dynamically changing data originating from shared data bases or
other members of the decision making group are permanently taken into acco..nt.
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The decision makers' communication needs are supported at two different levels. The
first level is the already mentioned dynamic data exchange. A hot link to data can be
established without requiring the intervention of the user who is linked to the data.
Figure 3 shows the corresponding interface under Microsoft Excel.
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Figure 3

The second level is implemented under Hewlett-Packard NewWave. It lets the partners
view all objects on each others' office desk. They can even copy or move objects to or
from their partners' desk. Of course, permissions for viewing, copying, moving etc...
can be selectively assigned to all types of objects. This feature complementing the
functionality of NewWave is only implemented on a PC under Microsoft Windows.
Figure 4 shows the view of the office desk of another partner.
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Abstract - The objectives of this paper are to provide the context for private sector
tollwaysin Australia. to explain the traffic forecastingmerhods employed. ond toidentifyihe
evalubition criteria. Attention is focused onthe technical aspects of the traffic estimation
and evaluation procegs which takes into account traffic forecasting techniques, iraffic
diversion and assignment, the temporal disiribution of peak-hour lra[fic'demands. vehicle
operating costs and fuelconsumption, monetary values of iravel time and dirxcount rares.

1. INTRODUCTION
Traditionally. the main roads in Australia have been constructed by state govern-
ments through their Department of Main Roads. However, in the state of New
South Wales in recent years, the policy has shifted to accommodate, and then
encourage, private sector participation in the construction and operation of road
facilities. The 400 million Sydney Harbour Tunnel, which has been under
construction since early 1989, is an example where the state government has
allowed the'constructlon of a road facility funded by a private consortium.
Furthermore, the Department of Main Roads (now Roads and Traffic Authority)
of the state of New South Wales has called for expressions of interest for three
privately funded toll roads - namely: the Buladelah Tollway, on the Pacific
Highway, about 250km north of Sydney; the F4 toll road in the north western
sector of the Sydney metropolitan area; and the F2 toll road in the western fringe
of Sydney. Attracting private funds will allow the Roads and Traffic Authority to
accelerate the construction of major road projects in accordance with the Roads
2000 Plan. The total funds available from both Commonwealth Government
sources and State sources to the Department of Main Roads in 1986/87, for
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ECONOMIC ANALYSIS OF CROSS HARBOUR TRANSPORT

Accuracy of the economic evaluation of toll roads depends on successful
forecasting of the level of traffic using the transport facility. Figure 1 shows the
methodology adopted by the senior author in the economic evaluation of the
Sydney Harbour Tunnel projéct and other alternative cross harbour transport
proposals. Th: four lane, 2.4 km long tunnel, now under construction, is.
conc\:ptualiy. a parallel facility to the existing bridge, which has 8 road lanes and
two train tracks connecting the north and south banks of Port Jackson and the
Parramatta River(the Sydney harbour) The investment and operating costs will be
recovered by the toll levied on traffic crossing the harbour using either the
(existing) bridge or the tunnel (when opened in late 1992), over a 35 year period
commencing on May 1987.

The topmost cell in Figure 1 refers to traffic projections related to Average

Annual Daily Traffic (AADT). In 1985, AADT on the existing Harbour Bridge
was 178,180 vehicles (DMR, 1986a, b). DMR (1986a) provides the following

traffic projections for the Sydney Harbour Bridge, based on past traffic trends.
Max Growth Yma = 178372 + 3358%

Min Growth ?mm = _—-@?———-

1+0.14¢7°%"

where,
¥ ous = estimate of AADT at maximum growth rate,

¥ = estimate of AADT at minimum growth rate; and
x = number of years from the base year 1985.
Note that in these two formulae the maximum growth implies a constant annual

increment of some 3360 AADT each year, whereas the minimum growth is based
on a daily upper “saturation level” of 200,000 vehicles for AADT.
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Gutteridge, Haskins and Davey (1986) - the traffic consultants to the Sydney
Harbour Tunnel: Transfield-Kumagai Joint Venture - approached traffic
projections from a growth in southbound traffic on the Sydney Harbour Bridge
for Average Annual Weekday Traffic (AAWT). The shape of the mathematical
function is a logistic curve based on "a strongly linear historic trend and a long
term growth constraint, based on a maximum Service Volume, creating a
mathematical asymptote for the growth curve (Gutteridge, Haskins and Davey,
1986). Traffic projections for Average Annual Weekday Traffic (AAWT) up to
2021 are illustrated by Cameron McNamara (1986a), the company responsible for
preparing the tunnel environmental impact statement (EIS). These include "high”,
"most likely”and "low” projections. For example, thelhigh projectionis calculated
from:

135000

40.6435 + 00281x)

Ywr=

1+10

where
¥ wr =estimate of AAWT southbound on bridge and tunnel; and

x = number of years from the tunnel openning year 1992.

The, "most likely” traffic projection assumed great importance in the final
appraisal of the project because it formed the basis of the guaranteed revenue
stream for thedevelapers that was“underwritten”by government. Anindependent,
expert review of the traffic forecasts and economic evaluations was sought
from Unisearch Ltd (1987a).

It is at this point that our approach differs from that of the consultants to the
Joint Venturers, and an original traffic model was developed. The preferred
approach is to make projections of: AADT and then partition them into average
annual weekday traffic(AAWT)and Average Annual Weekend Traffic (A AWE).
Based on time series data of traffic volumes on the Sydney Harbour Bridge from
1968 to 1985, regression analysis leads to the following relationship:

Y we = 4650 = 0.766Y (* = 0.99)

where,
Y we = estimate of average annual weekend traffic (AAWE); and

Y = average annual daily traffic (AADT).

Average Annual Daily Traffic(AADT) cquals five-sevenths of Average Annual
‘Weekday Taffic (AAWT) plus two sevenths of Average Annual Weekend Traffic
(AAWE). By rearranging. and ignoring public holidays:

AAWT = 7/5(AADT - 2/TAAWE).
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For the calculation of the costs and operational benefits associated with the
tunnel proposal, three time periods for each weekday are defined:

Peak periods - 7 to 100am and 4 to 7 pm;
off-peak periods - 10 am to 4 pm and 7 to 11 pm; and
night period - Il pmto 7 am.

As travel times are flow dependent it was necessary to estimate typical hourly
traffic flows for these three time periods over the life of the project (for evaluation
purposes taken to be up to 2021). Based on historical data, regression analyses of
the temporal distribution of traffic, as a function of Average Annual Weekday
Taffic, leads to the following equations:

Y, = 6.593Yw”7 (r! = 0.99)

Yop = 0.070Ywr'"'® (r* = 1.00)

where,
Y, = estimate of peak period traffic volumes;
Yo = estimate of off-peak period traffic volumes; and
Ywr = estimate of average weekday traffic volumes.

To ensure the temporal distribution of traffic is properly constrained by the
total average daily traffic figure, the estimate of the night period traffic volumes Y-
becomes:

?n = ?WT - ?P - ?OP.

Traffic assignment to a network requires the rate of demand to be established.
The hourly traffic flows for the three time periods give the demand rate and the
impactof projected tratfic volumeson travel time were estimated using Davidson's
(1966)travel time/traffic flow relationship. Thus, travel times at different times
of the day are computed firstly forthe bridge onlysituationand thenforthe
bridge with tunnel alternative.

The bridge only base case and the tunnel alternative can be compared in the
form of four different measures: travel time saving; fuel consumption; vehicle
operating costs; and accident savings (Table 1.) As mentioned before, the travel
time differences were based on Davidson's model. Differences in fuel
consumption were computed using the model reported by Bowyer (et al., 1984,
1985). Differences in vehicle operating costs were computed using published data
from New South Wales Road Freight Transport Industry Council, (1986) for
trucks and Royal Auto (July, 1986) for motor vehicles. Abelson (1987) also
provides comprehensive methods to compute vehicle operating costs. Accident
costs, whichaverageat | cent per vehicle kilometre, were based directly on
Department of Main Roads data (Cameron McNamara, 1986b), and were applied
to the distance saving of 800 metres via the tunnel made by 33 per cent of weekday
and weekend traffic. Table 1 sets out some economic evaluation parameters: the
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tunnel construction cost, its annual maintenance and operating cost, and the
monetary items for travel time, vehicle operating cost, fuel saving and accident
costs.

Table 1. Summary of Economic Evaluation Parametens for the Sydney Harbour Tunnel

Parameter Value

Construction costs $395 millon
(limited clearance tunnel)
Annual operating / maintenance cost  $7.9 million

Weighted monetary value of time $6.00 per peak hour (1992-1999)
$7.70 per hour (1993 onwards)
Vehicle operating cost $0.16 per veh / km
Vehicie ‘occupancy 1.4 persons / vehicle
Vehicle accident costs $0.01 per veh / km
Fuel savings $0.55 per litre
L . 135000
Traffic estimation ("most likely”) Y= 110 @i
for bridge and tunnel where,

Y = average annual weekday
traffic southbound
x = rumber of years from the tunnel
openning year 1992
Benefit cost ratios 1.9 at 4 % p.a. discount rate
1.2 at 7% p.a. discount rate
0.8 at 10% p.a. discount rate

(Source: Cameron McNamara, [986b)

The basic economic evaluation parameters given in Table l were used bothby the
tunnel proponents and by Unisearch Ltd. The most likely traffic projection used
by the consultants to the Joint Ventures is given in this table. From these inputs,
the consultants undertook an economic evaluationof the tunnel proposal and
estimated the benefit cost ratios as ranging from 1.9 to 0.8 depending on the
discount rate adopted.

The independent economic evaluation by UnisearchLtd(1987a)also used the
values in Table 1 asinputs but applied the traffic model described above to give a
more accurate representation of the temporal traffic flows over the bridge and
tunnel. A micro-computer model was developed to facilitate sensitivity analyses
for variations in costs and benefits and in the values of the economic evaluation
parameters. This approach gave lower benefit cost ratios than those derived by the
consultants to the joint ventures and given in Table 1 .

The additional advantage of the Unisearch Ltd approach was that it allowed a
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ready comparison of other cross harbour transport proposals, such as an
augmented Sydney Harbour Bridge and a cross harbour rail tunnel (Unisearch,
1987b). Figure 2 illustrates these alternatives together with the road tunnel
proposal. The augmented bridge gave the highest benefit cost ratio, primarily
because of its relatively low capital cost of $ 44 million. A rail tunnel.together with
the extra two traffic lanes on the §ydncy Harbour Bridge (replacing the existing
rail tracks), gave a benefit cost ratio very similar to that of a road tunnel.

In May, 1987, the goverment decided to proceed with the tunnel project, despite
widespread media criticism of its financial viability. The determination by the
Commissioner for Main Roads used higher monetary values for travel time than
those in Table ! ,anrd included a salvage value for the tunnel. The tunnel is under
construction and is scheduled to open toroad tratfic in September, 1992, Todate,
traffic using the Sydney Harbour Bridge is below that forecast by the consultants,
to the joint Venturers.
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Fig. 2: Sydney Harbour Tunnel and Alternative proposals.
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ROUTE CHOICE MODELLING

Whereas route choice modelling was not necessary in the evaluation of the
Sydney Harbour Tunnel because the traffic demands are split between parallel
facilities according to Wardrop's principle of an equal travel time assignment, it
was an important technical feature of traffic modelling of both rural tollways and
metropolitan toliroads. The government's principle in the development of any toll
road is that a’free, alternative, route must be available for drivers. Therefore, a
route choice model was developed by the authors to forecast future level of traffic
on three separate toll road proiects at various levels of toll charges. Price elasticity
of demand for cars and trucks are available for number of US toll facilities, as
shown inTable2. Ingeneral,when the cost of using the toll facility is increased, the
traffic volume is reduced.

Table 2. Price Elasticity of Demand for Cars and Commercial Vehicles on US Tollways

Cars Commercial
Vehicles
Location
Toll Increase Elasticity | Toll Increase Elasticity
1. ROADS (%) (%)
Pennsylvania 24 -0.08 24 -0.06
New Jersey 20 £.13 30 €.17
Indiana 20 9.31 30 0.17
Massachusetts 30 .18 30 4.17
Oklahoma 1 17 0.21 33 0.25
2 17 -0.30 33 -0.08
3 9 £.25 22 0.13
4 18 £.25 36 0.19
5 11 0.31 44 -0.12
2. BRIDGES
Delaware 20 £0.26 a 0.25
Chesapeake Bay 15 20.15 15 £.26

(Source: based on Wuestfeld and;Regan, 1981)

The authors applied a binary logit model to split the total traffic volume in a
given corridor between the toll road and the non-tollroad. Ben Akiva andLerman
(1979) show the applicability of logit formulation for choice modelling purposes.
The formula for a binary choice logit model for route assignment is:

P(t) =
I + exp(a + B x; + Baxz + Bixy)

where,
P(t) = probability of using the tollway;
X, = differences in route distances;
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X2 = differences in route travel times;
X3 = differences in operating costs; -
a = constant term: and

Bi.B:.Br = coefficients.

However, because of the paucity of data the three explanatory variables are
combined into one standard, composite, variable, called generalised cost - which
is a combination of travel time and cost - as follows:

P(() = _“l__
I + exp(fx)

where x = differences in generalised cost.
The model was calibrated using the data obtained from Sydney - Wollongong
Tollway (sce Section 2) in 1987.

The abovelogit model was applied, for example, in traffic estimation and appra-
isalof a proposal for atollway fromQueanbeyan(nearCanberra, Australia's capital
city)to the South Coast of New South Wales. This particular applicationwas part
of the researchand development of a consultancy project undertaken by all three
authors on behalf of Unisearch Ltd. for a private - sector consortium. The
essential features of the existing situation are described as follows. The distance
from Canberra to Moruya (on the South Coast) via the Araluen Valleyis 162 km.
The Araluen Valley road is about 7 m wide and of gravel construction. Itis a very
steep mountain road with many tight curves and 1s presently not a feasible route
for Canberra - South Coast traffic. For instance, field studies showed that driving
from Moruva to Araluen on a Saturday morning in April (Autumn), only three
cars and two motorcycles were observed. On the other hand, Canberra to Moruya,
via the Kings Highway (Main Road 51) and Batemans Bay, is 152 km. Frcm
Braidwoodto Batemans Bay the distance is 61 km, with a winding section of road
through Clyde Mountain. During the weekdays, the traffic flowis light between
Bungendore (25 km to the east to Queanbeyan) and Batemans Bay, because two

thirds of traffic to and from Queanbeyan leaves Main road S1 at Bungendore,
with destinations to and from Goulburn, located to the north.

Over a twenty - year period from 1967 to 1988, traftic counts by the Department
of Main Roads, New South Wales, show that the number of vehicles using the
Kings Highway has increased from about 1000 vehicles per day to about 3000
vehicles per day. However, the average traffic counts conceal both the seasonal,
and weekend. characteristics of traffic. This general level of traffic activity noted
above was confirmed by a survey undertaken by the local government autority,
Tallaganda Shire Council in December, 1987.

Fourdifterentalignments proposed tor the toll road, and considered in our
analysis. are schematically shown inFigure 3. In the context of the wider land -
use / transport system, we observe that the toll road concept is a sound one. It is
consistent with current New South Wales Government policy on roads. An
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alternative, free, road would be available to motorists, irrespective of any toll road
alignment finally adopted. A toll road between Queanbeyan and Moruya would
give genuine route distance saving to motorists (who currently use Kings Highway
to gain access to and from the coast) from Goulburn, Canberra, and parts of
country New South Wales (Fig. 4). The alignment would also make travel from
Melbourne via Canberra to the South Coast almost as shoft as the currently
favoured route via the Princes Highway (782 km compared with 742 km).
Distance savings to road users represent genuine resource savings in fuel
consumption and vehicle operation costs.

Existing road :140 km

Queanbeyan
Batemans Bay

Toll road " wy - u
alignments ; 142 or 147km & 3

Queanbeyan Existing road : 167 km

Toll road il e ~
alignments : 115 or 120 km ~ Moruya
Existing road : 90 km
Queanbeyan Braidwood Existing road : 61 km

L/

L ]
slignments :
61 or §4 ken Tollroad & o
alignments : &N Moruya
88 or 93 km L J ¥

Existing road : 90 km

Queanbeyan Braidwood Existing road : 88 km

Batemans Bay

L
alignments : L )
Toll road N
61 or 64km alignments : ~ Npg
61 or 69 km

' Fig. 3 Network Representation of Toll Road Alignments.




65
PARRAMATTA

248 Suaight line I‘
318 Princes Hwy

SYDNEY

340 Tol) road | 248 Suraight line
312 Princes iiwy
GOULBURN ! 358 Toll road
133 Surdgiv line t
- 170 Kings Highway ’
150 Toll road
CANBERRA o \

112 Straight line ~ \ ¢/ BATEMANS BAY

182 Kings Highway \‘

130 Toll roed -~ ] MORUYA

-
-~ BEGA
-
-
-
-
-
«
MELBOURNE DRAWING NOT TO
7;502 ls’:x:u- }I{mc ~ SCALE
M2 Tallroad DISTANCE IN KM.

Fig 4. Effect of Toll Road on Distances to Moruya (South Coast).

The micro-computer-based traffic forecasting model that was developed allows
avariety of assumptions about tollroad characteristics to be analysed-length tolls
charged, whether tolls are indexed or unindexed. or whether drivers decide on
their route choice because of total, or perceived. costs. Toll charged, value to
travel time, and fuel consumption costs, are taken into account in the analysis
based on perceived costs. In addition, vehicle operating cost (which includes

depreciation and tyre wear) is included in the total costs based method. The level
of trafficobtained fromthe total costs method is generally less than that obtained
from the perceived costs method because of increased operating cost tor toll road

users. The results of this comprehensive analysis, using alogit modeltotake into
account behavioural response of travellers for the two toll road alignments, have

been presented elsewhere (Unisearch Ltd, 1989).

A brief summary of this comprehensive analysis makes the following points.
Based on the historical growth of traffic on the Kings Highway, and traffic
projection by trend extrapolation into the future, it can be shown that a toll road is
not financially viable (given its construction, operation and maintenance costs).
This is summarised in Fig 5 for the corridor between Queanbeyan and Batemans
Bayand in Fig ¢ for the corridor between Queanbeyan and Moruya. The graphs
show the relative traffic levels for long and short alignments, for perceived and
total costs, and for four toll levels($5 for cars, $10 for trucks; $10forcars, $20 for
trucks; $20for cars,$30fortrucks; and $ 30for cars, $50for trucks).In conclusion,
the level of traffic on these toll road alignments, considerng the historical
growth of traffic alone. is insufficient to justify investment.
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However, trend extrapolation can be a misleading technique for long-term
traffic forecasting, especially when there is substantial changé in the land-use
context. Therefore, the second stage of the analysis took a different approach. We
asked the question: what level of traffic would be required to give a return on
investment assuming construction costs and maintenance costs of the toll road
were known? This is referred to as the break - even traffic analysis. Steps involved

in this break - even analysis are shown in Fig 7

Constructi ¢ Maintenance cost Rate of return
onstruction cos aintena on investment
| . |
8 ¥
Annual cost
Toll tevel Traffic Break-even
composition revenue
T T I
Level of
traffic required for
break-even revenue

Fig 7. Conceptual Models for the Estimation of Break - Even Traffic Levels for Toll Road
Investment.
The results are summarised in Fig. 8 . The graphs show the traffic volume

required over a period of 30 years to make the proposal financially viable (8
percent return on investment) for three toll levels ($5 - car, $10 - trucks; $10- cars,

$20- trucks; and $20 - cars, $30- trucks). Assuming a toll level of $10 for cars,
the traffic levels required initially would be in the order of 14000 vehicles perday.
70000
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Fig8. Average Annual Dauy Traffic Over a 30-year Period Required to Financially Justify a
Toll Road.
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The significance of identifying the level of traffic required for a break - even
revenue is to determine the difference between traffic forecasts based on
historical trends, and the traffic rcquired to justify, on economic grounds,
investment in new roads. This traffic shortfall represents the amount of annual
traffic that would have to be generated or ‘induced by new land-use developments.
In the context of the Queanbeyan - South Coast toll road proposal, these
developments relate primarily to tourism and the attraction of the coast both for
retired people (from Canberra) and for holiday home investment. Also considered
was the relationship between the Very Fast Train (VFT) proposal linking Sydney,
Canberra, and Melbourne (a fesibility study is due for completionin 1991)and its
influence ontourist traffic, especially the role of the tollway as a ~ feeder service ~
to this new railway. the traffic results of these scenarios are beyond the scope of
this paper, but nevertheless they formed an important part of traffic forecasting
methodology that was developed for the client.

CONCLUSIONS

The methodology for economic evaluation and financial appraisal of transport
facilities which aim to attract private-sector funding has been described using two
case studies. The first case study, the $ 400 million Sydney Harbour Tunnel project,
required the development of a methodology thattook standard AADT traffic
projections and separated them into weekday and weekend traffic and then into
traffic by three periods of the day.. The traffic estimation procedure provided the
necessary input tothe application of Davidson'straveltime/flow model to transform
the traffic projections into level of service measures, such as travel time, fuel
consumption, vehicle operating costs, and frequency of accidents. Standard
economic evaluations (benefit cost ratio, internal rate of return, and net present
value) were performed based on the predicted variations of the above measures
under a number of alternative transport improvement strategies. A flexible micro
- computer program allowed sensitivity analyses to be readily undertaken.

The second case study of a proposed toll road project in rural NewSouthWales
was introduced to demonstrate the application of the logit model to account for
the manner inwhich road users weight up the costs and benefits in choosing
between alternative routes. The logit model was applied toestimate the potential
traffic share on a toll facility,compared tothe total traffic volume of the corridor,
given assumptions about route lengths, speeds and toll charges. This particular
case study wasalso usedtodemonstrate the break-even traffic analysis developed
toesumate the annual level of traffic required over the project life-time to attract
private investment.

This paper has explained the researchand development underpinning major
independent, expert consultancy advice to government and to the piivate sector
by the University of New South Wales R & D Company, Unisearch Ltd. Although
economic evaluation has become standard practice in road project appraisal there
are nevertheless technical issues in the quantification of benefits (and also of
environmental costs that have not been addressed in this paper). Quantification of
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benefits requires accurate traffic estimation because the level of facility use will be
an important factor in total user benefits and in the financial viability of any
project financed on a user-pays principle. In Australia, as direct experience with
tollways is limited. as outlined in Section 2, and our search through the Australian
literature failed to discover any suitable methodology, it was necessary for the
authors to develop original traffic models as one part of the overall economic and
financial evaluation process, and these hasbeen explainedintechnical detail inthis
paper. To date no methodological work on the private-sector toll road proposals
in New South Wales has been published, and so this work is presented to stimuiate
discussion about the methodology to improve the accuracy of tratfic modelling
and forecasting exercises.
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Abstract: The talk gives an introduction into the OpTiX-1I DSS for the modelling and parallel solution of nonlinear
optimization problems which arise especially in the fields of engineering design and production planning. The DSS
supports all sicps from the formulation of nonlinear optimization problems to the solution on parallel computers.
Thereby OpTIX-II provides an engineer / decision maker with the knowledge of an optimization / computer expert in
form of software. In order 10 reduce the overall computing time and o improve the quality of the solution obtained,
much emphasis has been placed on decomposition principles and nonsequental solution approaches in mathematical
opumizaton.

1. Introduction

OpTiX-Il is an interactive decision support system for the solution of nonlinear optimization
problems which arise especially in the fields of engineering design and production planning. The
OpTiX-II software environment supports an engineer / decision maker with the knowledge of an
optimization / computer expert in the form of software. It makes use of modem computer technol-
ogy (e.g. computer networks, parallel computers) for faster and more reliable problem solutions
and supplies an easy-to-use graphical interface for untrained computer users. in order to reduce
the overall computing time and to improve the quality of the solutions obtained, much emphasis
has been placed on decompositon principles and nonsequental solution approaches in mathemat-
ical optimization. Parallelism in the solution of nonlinear optimization problems can be exploited
at several levels:

(I) First, the application of decomposition techniques and multi-level optimization strategies
leads to Ist level optimizauon subproblems and a 2nd level coordination problem. These
decomposed optimization problems are solved by primal decomposition methods (feasible
method) or dual decomposition methods (non-feasible method). In both cases, the solution of
the 1st level optimization subproblems is well suited for a coarse grained parallel computa-
tion. Therefore OpTiX-1I may distribute these subsystem optimizations onto a network of
heterogenous Unix-workstations or paralle] MIMD-type computers.

(I Secondly, parallel implementations of the classical algorithms based on the Lagrange- or
Kuhn-Tucker theory, make use of fine grained parallelism. This leads to a high communica-
tion effort between the processors involved in the computation. Therefore, it is advisable to
use strongly coupled parallel computers with a high communication bandwidth, e.g. shared
memory multiprocessor-systems. Currently OpTiX-II supports some parallel implementa-
tions of classical algorithms on shared memory multiprocessor-systems using the Unix oper-
ating system.

(11T) In their mathematical description, practical nonlinear optimization problems frequently con-
sist of highly nonlinear objective functions and constraints. In these cases assumptions about
unimodality, convexity, and smoothness of well-known solution methods in nonlinear opti-
mization are mostly invalid. OpTiX-II allows to apply a simultaneous combination of differ-
ent optimization algorithms to one optimization problem. Thereby, the controlled information
exchange between the participating and parallel-running methods is the basis for a more reli-
able and, in some cases, even faster solution.
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Work with OpTiX-II consists of three phases: During the problem formulation phase (I), the user
defines the precise mathematical formulation of the optimization problem under analysis (see
Section 2). This formulation is then translated (II) into a machine representation, which is suitable
for parallel processing in heterogenous networks (see Section 3). The third phase, used for the
solution of the optimization problem, is described in Section 4. Within this step (III), the user has
to define a optimization strategy, by choosing a combination of optimization algorithms, and he
has to start the optimization process.

2. Problem Formulation Phase

This phase is supported by the OpTiX-II Edit-Environment (fig. 1), which is being used for for-
mulating the optimization problem, for controlling the generation of optimization servers for dif-
ferent platforms and for starting the execution environment.

The problem description is entered into a graphically controlled problem editor using the OpTiX-
II problem description language which resembles the mathematical notation for nonlinear optimi-
zation problems (fig. 2). In many practical situations, complex optimization problems can not be
described by simple mathematical notation. Therefore, OpTiX-1I allows the inclusion of external
functions written in the programming languages C or Fortran (fig. 1). Calls to these functions may
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Fig. 1: The OpTiX-II Edit-Environment.
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become a subexpression of an objective function or a constraint. Even commercially available
sirulation packages for the solution of complex mathematical models may be inciuded in such a
way. Other language constructs allow the formulation of decomposed optimization problems (fig.
2) so that multi-level optimization strategies may be applied.

3. Problem Translation Phase

This phase is controlled by the ,.Compile* and ,,Build executables menus from the Edit-Environ-
ment. The selection of the ,,Compile button starts the OpTiX-II problem compilsr, which trans-
lates the problem description into a collection of functions written in the computer language C.
Thereby, the compiler calculates symbolic first and second order derivatives for all objective
functions and constraints. This ensemble of C-functions is then compiled and linked into optimi-
zation servers for different hardware/software platforms (e¢.g. SPARC/Solaris, MIPS/Ultrix,
Transputer/Helios). These optimization servers are called from within the execution environment
(in phase III). This approach allows paralilel optimization in heterogeneous computer networks.

/* gear reducer decomposed */
realvar x1,x2,x3,x4,x5,x6,x7 [.f1,12;
problem
subsystem “shaft_snd_bearings_1": subsystem “shaft_and_bearings_2":
f1 = min -1.508*x1*sqr(x6) + 7.477*x6/3 + 0.7854*x4*sqr(x6); 2 = min -1.508*x1*sqr(x7) + 7.477*x7A3
decisionvar x4,x6; +0.7854°x5*x742;
constramis decisionvar x5.x7;
1* 83 */ 1.93/x2x3*x4A3/x6M <= |; consgaints
1* g5 */ sqri(sqr(745*x4/x2/x3)+16.9E6)/0.1/x63 <= 1100; /o g4 *11.93/x2/x3*x5A3/xTA4 <= 1;
1* 824 %/ (1.5%x6+1.9)/xd4 <= 1; /* 26 */ sqri(sqr(145*x5/x2/x3)+157 SE6)
bounds 10.1/x7A3 <= 850,
/*gl6.g17 %/ 73 <=x4<=83; /* 825 */ (1.1°x7+1.9¥xS <= 1;
/* 820,821 */29 <=x6<=3.9; bounds
endsubsystem; /P gl8.g19%/ 73 <=x5<=83;
/* 222823 %/50<=x7<=55;
endsubsystem;

subsystem “Gear_Reducer_2nd_level™

f=min  -1.508*x1*sqr(x6) + 7.477*x673 + 0.7854*x4*s5qr(x6)
-1.508*x1°sqr(x7) + 7.477*x7A3 + 0.7854*x5°x7A2
+0.7854*x1*sqr(x2)*(3.3333*sqr(x3)+14.9334*x3.43.0934);
decisionvar x1,x2,x3;
constraints
/* g1 */ 27/x1/sqr(x2)/x3 <= 1:
/* 82 */ 397.5/x1/sqr(x2)/sqr(x3) <= 1;
/* g7 */ x2*x3 <= 40;
7" g8°/x1/x2>=5;
* g9 x1/x2<=12;
bounds
/* gl0,g11 */2.6 <=x1 <=3.6;
7*g12,813%/0.7<=x2<=038;
/*g14,815%/17 <= x3 <=28;
endsubsysiem;
endproblem;

Fig. 2: Example of an OpTiX-II problem description for a decomposed nonlinear optimization
problem ([Azanmm90], {Golinski70]).
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Currently the problem translation phase generates code for:
(i) Unix workstations from different manufacturers.

(ii)) MIMD computers with shared
- multiprocessor Unix workstanons/scrvcrs. e.g. Sun SPARCstation 10 and 600
series, Sun SPAR(_chmer 2000 series.

(iii) MIMD computers with distributed memory:
- Transputerclusters.
- Workstation networks, regarded as loosely coupled muitiprocessor-system.

4. Problem Solution Phase

The OpTiX-II execution environment is used for controlling the ongoing optimization process. It
distributes the computations onto NFS-based heterogeneous computer networks, multiprocessor
workstations and transputer-based parallel computers. Furthermore, the Execution-Environment
records the problem solution process and displays the resuits. The user interacts with the control
module of the Execution-Environment (fig. 3). This user-interface corresponds to the Open Look
standard and is completely interactive. In the simplest case of a non-decomposed optimization
problem, the user selects an optimization algorithm from the algorithms list, a host for execution
from the hosts panel, the ,.add* option from the ,.edit“-menu, and presses the start button. The
optimization results are displayed in the control module window (fig. 3). After each computation,
the user may select another algorithm and continue the optimization by pressing the continue but-
ton. For difficult or decomposed optimization problems, the user has to define a more complicated
strategy script, defining the optimization steps that have to be taken. In each step, the user may
combine the following strategies:

(i) In the case of decomposed optimization problems, all subsystem optimizations can be run in
parallel, reducing the overall computational time effort. The user may choose this strategy by
selecting a 3-tupel (subsystem, algorithm, host for computation) for each subsystem within
the control module (fig. 3).

(ii) The user may apply a parallel optimization method (to a subsystem optimization), if a paral-
lel computer with shared memory is available.

(iii) A simultaneous combination of different optimization algorithms to one optimization (sub)-
system may be applied. In this situation, the controlled information exchange between the
participating and parallel-running methods is the basis for a more reliable and, in some cases,
even faster solution ((Boden91a), [Boden91b]). This approach is similar to hybrid optimiza-
tion methods described in {Burdakov88] and [Kleinmichel92]. Their idea is to define tests for
switching between a globally convergent method [ and a locally superlinearly convergent
method 11 in order to obtain a globally and locally superlinearly convergent method (fig. 4).
The OpTiX-II user may apply both methods in parallel on different computing nodes. Aftera
user-definable number of iterations, the best value of both strategies is selected and used as a
basis for further computations.

The basic control unit in OpTiX-II is a block (fig. 5) that consists of a sequence of optimization

steps, each using the strategies described in (i) to (iii). By the use of several blocks, in parallel, the

calculations may be started from different initial points. Thereby, problems resulting from multi-
modality, nondifferentiability, and nonconvexity of the feasible domain may be overcome.

For the solution of decomposable nonlinear optimization problems the user may apply primal

decomposition methods (resource division, principle of interaction prediction, feasible method) or

dual decomposition methods (objective function modification, non-feasible method). In both
cases, the user has to define first and second level (coordination) problems within the problem edi-
tor. He then defines a control strategy consisting of a block with two steps. In the first step, he
selects at least one 2-tupel (algorithm, host for computation) for each first level subsystem. There-
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Fig. 4: The coupling-scheme within hybrid
optimization methods {Klein-
michel92].

after, in the second step, he chooses at least
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Linear time algorithms for VLSI routing
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Transp. Eng., Technical University of Budapest, Hungary)
Extended abstract

Consider the gradually more and more complex problems

of single row routing, channel routing and switchbox routing
on the one hand; and the gradually less and less restrictive
models (1-layer, Manhattan, unconstrained 2-layer,

multilayer) on the other hand. The single row routing
problem can always be solved in the Manhattan model, and the
channel routing problem can always be solved in the
unconstrained 2-layer model, in fact, both in linear time.
We show that the switchbox routing problem is solvable, even
in linear time, in the multilayer model.

I.

A switchbox is a rectangular grid G of horizontal
tracks (numbered from O to w+l) and vertical columns

(numbered from O to h+l), where w and h are the width and

the height of the switchbox. The boundary points of G are

called

Northern if their coordinates are of form (i, w+1) with
i=1,2,...,h;
- Southern with form (i,0) where i=1,2,...,h;

- Eastern with form (h+1, j) where j=1,2,...,w; and

Western with form (O, j) where j=1,2,...,w.

For example, Figure 1 is a switchbox with width 4 and height
5, where Northern, Southern, Eastern and Western boundary
points are denoted by x's, plus signs, empty and solid dots,
respectively. The "corners" of G will not be considered as
boundary points,

A net is a collection of boundary points. A switchbox

routing problem (SRP) is a set of pairwise disjoint nets. If

every boundary point of every net is Southern, the SRP is




79

called single row routing problem, if they are all Southern
or Northern, the SRP is called channel routing problem
(CRP). We shall also use the expression open box routing
problem (OBRP) if there is no Eastern boundary point.

A CRP is called bip;rtite if every net consists of one

Northern and one Southern boundary point. An SRP is called
4-partite if every net consists of one of each four types of

boundary points. Finally, we call an OBRP 3-partite if

every net consists of one Northern, one Southern and one
Western boundary points (hence no Eastern boundary point is
contained in any net).

The solution of a routing problem in the single layer

model (SLM) is the realization of the nets as pairwise

vertex disjoint subgraphs (usually Steiner trees) of the
planar grid graph G so that each subgraph connects the
boundary points of the net. The edge-disjoint single-layer

model (EDM) is defined in the same way except that the

subgraphs must be pairwise edge disjoint only. For example,
Figure 2 shows the solution of an SRP in the SLM, while the
two SRP‘s of Figure 3 cannotbesolved in the SLM, only in the
EDM.

The unconstrained k-layer model (UkM) requires pairwise

vertex disjoint subgraphs of the k~layer grid graph Gk.

Edges of these subgraphs Jjoining adjacent points of two
distinct layers are called vias. In case of k=2 vias are

also called via holes but one should not imagine them as
holes if k>3 since situations like that of Figure 4 are also
possible (segmented or stacked vias, see Mueller and

Mlynski, 1988 or Lengauer, 1890, respectively).

The multilayer models may be constrained. If we have
two layers and one of them is restricted to horizontal wire
segments and the other is restricted to vertical ones then
we obtain the Manhattan model (MM). For example, both SRP‘s

of Figure 3 can be solved in the U2M but only the second one
can be solved in the MM.

Finally let us emphasize that the "corners" of the grid
graph G (or any copy of them in Gu) must not be used in the

routing. Similarly, the solution of a single row routing
problem must not use Eastern, Western or Southern boundary
points, that of a CRP must not use Eastern and Western ones,

and that of an OBRP must not use Eastern ones.




II.

Every single row routing problem can be solved in the
MM, in fact, in linear time. This observation is probably
due to T. Gallal and it belongs to the engineering folklore
since decades. Similarly, every CRP can be solved in the U2M
(Marek-Sadowska and Kuh, 1983) and even a linear time
algorithm is known (Recski-Strzyzewski, 1990). However, -
while Gallai‘s algorithm realizes the problem with minimum
width, our algorithm does not, and the computational
complexity of deciding whether a CRP can be solved in the
U2M with a given width seems to be open, see Johnson, 1984
and Recski, 1992 as well.

Hence a natural question arises: can we solve every
OBRP or every SRP In the UkM with a sufficiently large k?
The answer is negative, as shown by the SRP of Figure 5,
essentially due to Hambrusch, 1985. If the pairs of
identical numbers are the nets then the congestion of the
dotted line is h+n. In case of £ layﬁrs this clearly means
fwzh+w, leading to the lower bound o*1 for the number of

layers. Thus the number of necessary layers can be
arbitrarily high if we allow very thin or very wide
rectangulars.

However, suppose that the quantity
w'h
is fixed (essentially, bounded from above). Let s denote the
number of those sides of the board which contain terminals
at all, i.e. let s=1 for the single row routing problen,
s=2,3 and 4 for the CRP, OBRP and SRP respectively.
Theorem 1 There is a function {a=£;(m.s) such that any

problem characterized with m and s can be solved in linear
time in the UEM for lkfb.

In particular, we conjecture f;(l,s)=s if s>1. Right

now we can prove the following very special case:
_Theorem 2 Co(l,s)=s in the s-partite case (s>1).

Details of the proofs and algorithms will be published
in the full paper. Routing examples are shown in Figures 6
and 7 (m=1, s=2 and m=1, s=4, respectively). Wires in the
four layers (in this order) are shown by heavy, thin, broken
and dotted lines, respectively.

III.

Our main conjecture, 30(1.4)=4 seems to be unrelated to
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the result of Brady and Brown (1984), apart from its title
"Four layers suffice" because there the authors show that a
realization of the SRP in the EDM can always be transformed
to the UAM but such an EDM solution need not exist. Since
deciding, whether such a transformation from EDM to U3M is
possible, is known to b® NP-complete (Lipski, 1984), it is
reasonable to conjecture that the problem to decide if an
SRP with h=w can be realized in the U3M, is also
NP-complete.
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A Constructive Method to Improve Lower Bounds for the
Quadratic Assignment Problem

Jaishankar Chakrapani* Jadranka Skorin-Kapov!

November 16, 1992

Abstract
We present a new approach to evaluating lower bounds for a class of quadratic

assignment problems (QAP). An instance of a QAP of size n is specified by twon x n

matrices D and F and we denote such an instance by QAP(D, F). Our approach is

applicable to problems where the matrix D is derived as rectilinear distances between

points on a regular grid. We construct two matrices Fop; and Fy, such that F =

Fopt + Fyey and the optimal solution to QAP(D, F,p) is known. Any existing lower

bound can then be applied to QAP(D, F,.,), which in sum with the optimal value for

QAP(D, F,p) provides a valid lower bound to QAP(D, F). This approach results with

improved lower bounds for some QAPs from the literature.
1. Introduction A quadratic assignment problem (QAP) of size n is specified by
two n X n matrices D and F. Denoting by IT the set of all permutations of {1,2,...,n},
the problem can be defined as min,en C(7) = 30, 23=19x(i)x(j) fij- QAPs have numerous
applications including facility location, backboard wiring and, scheduling. For a compre-
hensive survey of QAPs the reader is referred to a paper by Finke et al. [1]. In the context
of facility location, the matrix D is thought of as the matrix of distances between locations,
and the matrix F is thought of as the matrix of flow or interaction between facilities.
Two of the main existing lower bounds for the QAP are Gilmore- Lawlor bounds (GLB) [2, 4)
and eigenvalue bounds (3, 8]. We propose a novel approach to the problem of computing
lower bounds for QAPs. Our approach is applicable to QAPs whose matrix D is composed
as rectilinear distances between points on a regular grid. All of Nugent’s problems (6] of
sizes between § and 30, one problem of size 36 due to Steinberg {11] and problems of sizes
between 42 and 100 due to Skorin-Kapov (10, 9] fall under this category.

Our approach for calculating lower bounds for the QAP starts with an initial identification

*Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony
Brook, NY 11794 email: chakrapa®@ams.sunsyb.edu

'"Harriman School for Management and Policy, State University of New York at Stony Brook, Stony
Brook, NY 11794 email: jskorin@ccvm sunysb.edu. All correspondences 1o be addressed to this author.
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of Fyn* and Fi™* such that F = Fjnt + F3%, and the optimal solution to Finf* is known.
Transformations preserving optimal permutation are then applied to F;,’,“"‘ to obtain Fp
and F,., such that F = F,5 + F,.,. One of the transformations we use is similar to the
one proposed by Palubetskes {7} to generate QAPs with rectilinear distance matrix and
known optimal solution. For a QAP specified by matrices A and B, define by opt(A, B)
(resp., by {b(A, B}) the minimal objective function value (resp., the lower bound on the op-
timal objective function value). Clearly then, opt(D, F) >= opt(D, Fope) + opt(D, F,e,) >=
opt(D, Fop) + I6(D, F,.,), and the last expression is a valid lower bound for the initial
QAP. Any of the existing bounds from the literature can be applied to obtain Ib(D, F,.,),
and therefore our method could serve as a preprocessing step to possibly tighten existing
bounds. We formulate the construction of F,, and F,,, as a linear programming problem
which we refer to in the sequel as LPLDB. The sequel also states our results without proofs
for the sake of brevity.

2. Constraints of LPLD The first siep to our bounding method is to generate
a QAP instance with known optimal permutation. For convenience we use the identity
permutation 7; as the optimal permutation.

QAP with x; as optimal permutation: Consider a QAP where all the entries of one
of the matrices, say F, equal a constant {. Denoting by dyum = ¥ 7 27y dij the sum
of all entries of the matrix D, it can be easily shown that for such a class of QAPs every
permutation (including n) is optimal, and the objective function always evaluates to £dsum.
Transformations preserving optimal permutation: Let x; be the optimal permuta-
tion to a QAP. We present two tvpes of transformations that preserve the optimal permu-
tation when applied to the flow matrix. Both transformations are elementary and the first
is due to Palubetskes [7].

Let the rectilinear distance matrix D be formed from an r x ¢ (n = re) grid of points. Each
location is then specified by its coordinates in the grid. Let i = (r;,¢;) and j = (rj,¢;) be
two locations 1 < ri,r; < r, 1 < ¢i,c; < c. Let k = (rx,cx) be another location. We say
that k is in the path between i and j if rx lies between r; and r;, and c; lies between ¢;
and ¢;. Note that if & is in the path between i and j, dij = dix + djx. The main result of
Palubetskes [7] uses this property of rectilincar distances along with the validity of triangle

inequality.
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Definition 1 Let a be a positive scalar. ¥ m > 1, Al(ikykz ... kmj, @) is an n X n matriz
such that the entries iky, kika, kaka, ..., kmj equal a, the entry ij equals —a, and the rest

of the entries are 0.
Definition 2 Let a be a positive scalar. A?%(ikj, ) is an n X n matriz such that the entries

ik, kj and ij equal o, and the rest of the entries are 0.

Lemma 1 (Palubetskes) Let D be the rectilinear distance matriz and let F be the flow
matriz for which x; is optimal. Let i,ky,ks,...,km,j be m + 2 locations (m 2 1) such
that ky is in the path between i and j, and V 2 < | < m k; is in the path between ki,
and j. Define Fly . .. = F+Al(iki...kmj,a). wp is still optimal for Fji, . ;. with

the optimal objective function value unchanged.

Lemma 2 Let D be the rectilinear distance matriz and let F be the flow matriz for which
x1 is optimal. Let i,k,j be three locations such that diy = dx; = 1 (dij = 2). Define
Fhia = F + 8%;, Then n; is still optimal for Fk,o with an optimal objective function
value of opt(D,F) + 4a.

Formally we define the transformations as below.

Definition 3 T1(ik) ...kmJ, a) is the transformation due to the addition of A'(iky ... kmj,a)

to the flow matriz, where the locations i,ky,...,km,j satisfy the path criterion of Lemma 1.
Definition 4 T'2(ikj,a) is the transformation due to the addition of A?(ikj,a) to the flow

matriz, where the locations i,k,j are such that diy = dg; = 1.

Since the rectilinear distance matrix is symmetric, the flow matrix can be assumed to be
symmetric without loss of generality. The resultant flow matrix after either of the transfor-
mations can be kept symmetric by performing both T1(ik; ... kmj, @) and T1(jky, ... k11, @),
or T2(ikj,a) and T2(jki,a) In the first case the optimal objective value is unchanged, and
in the second case it is opt(D, F) + 8a.

Constraints: We first present constraints for the first type of transformations. Formula-
tion of constraints involves identifying for each location i, the sets M* = {j|j > iand jis
involved in T'1(ik...J) for some k} and A* = {k | rx 2 ri and k is involved in T1(ik...J)
for some j} such that M'()A* = 0. Then for each location i, a single source single sink
network flow graph is developed as follows. Node i is the source and each element in the
set M* has a directed edge to a common sink z'. There are directed edges from i to each

element k in the sct A*. For each k € A* directed edges are added from & to each element
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in the set A* as follows. If ¢4 < c;, add directed edges from k to elements in A* whose
columns are less than or equal to ¢x; if ¢x > ¢;, add directed edges to elements in A; whose
columns are greater than or equal to ¢;; and if ¢, = ¢;, add edges to all elements in A;.

This process is continued recursively for each element k € A*® and terminates upon reaching
either the bottom left node (r,0), or the bottom right node (r,¢c), or both depending on
whether ¢ is less than, greater than, or equal to ¢; respectively. Similarly, graphs are con-
structed for each location i. The result is a set of n — 1 graphs, one for each location (except
the n-th) as the source, and there is no edge between graphs corresponding to different
locations. Consider the intermediate nodes which are neither the source nor the sink. For
these nodes the balance constraints (flow-in equals flow-out) form a set of linear constraints.

A flow from a source to a sink corresponds to a transformation as follows.
Definition 5 Lct 1 be the source and let j € M' be one of the nodes with an edge to the

sink 2*. Consider a positive flow of a along the path i — ky — ... — kg — j — 2*. The
transformation corresponding to the flow is T1(iky ... kmj, a)

We establish that the performance of the transformations must satisfy the constraints.
Theorem 1 Let Sy be the set of all feasible positive flows satisfying balance constraints,
and let T be the set of all possible transformations of the first type with the sets A* and
M?* defined as above. Every s, € S, corresponds to some subset of T' and every subset of
T! corresponds to some s; € ;.

A set of constraints for transformations of the second type can be realized in a similar
fashion.

3. Objective Function of LPLB We design (heuristically) a linear objec-
tive function to, possibly, tighten the Gilmore-Lawlor bounds (GLB). First, the rows and
columns of the matrix F are permuted so that 7; achieves the best known objective func-
tion value for the QAD. Intuitively, this strategy should bring F,,; “closer” to F providing
better bounds.

We start with an initial optimal part F;,’,'{‘ where all entries equal a constant £ > 0 except
the diagonal which are zeroes. The residual part Fi2* is defined so that F = Finft + Finj*,
For the first type of transformations, we set M* = {j | j > i and [Fi™!];; < 0} and
A' = {k|re > rand [Fi™);x > 0}. In other words, the transformation ‘T'1 adds (sub-

tracts) to an entry of Fg;‘,“ if the corresponding entry in F/%! is greater (lesser) than zero.




Similarly, the sets are defined for T2. Note that T2 only adds to entries of F';,',‘,“. Denote by

Xij, the total amount added to or subtracted from [Fin{*);; due to all the transformations.

We impose some additional constraints on X;; as follows. X;; < —[Fit].. if j € M*, and
Xi; < [Finit);; otherwise. These constraints ensure that the transformations do not produce
additional negative entries in the residual part of the flow matrix F.

Recall that x; (the optimal permutation for F,,) also achieves the best known objective
function value for F. If r; can also be established as an optimal permutation for F,.,, its
optimality for F is proven. Though this may not be possible in all cases, better bounds
may be obtained in general if [b(D, F,.,) is close to the value it achieves with x;. Let
dmar = r+¢— 2 denote the maximum entry in the distance matrix, and let d,,;, = 1 denote
the minimum entry. If #; were optimal for F'%¢, in the evaluation of the objective function
each entry [F'™!];; would be multiplied by d,;. For the unknown optimal permutation let it
be multiplied by some other distance matrix entry dp,. The difference in objective function
value due to a single entry ij is [F}05),;(dij — dpg ). If [Fini%)i; > 0, (dij — dmin)Xi; is the max-
imum gain in lower bound due to the entry ¢j. Similarly if [F7);; < 0, (dmaz — di;)Xi;j is
the maximum gain due to entry ij. Our objective function is to maximize "7, 3°%_, Ci; Xi;
with the coefficients C;; being either d;; — dmin OF dmaz — di;, depending on whether [F,":,"‘].‘,-
is greater than or less than zero.

4. Computational Results Computation of a lower bound involves three
phases. In the first phase, an LP is generated depending on the initial optimal part and in
the second phase, the LP is solved. In the third phase, the optimal part is constructed from
the LP solution, its objective function evaluated, and a lower bound from the literature is
applied to the residual part. The first and third phases of the computation were done on a
Sun SPARC Station 1, and for the second phase the IBM 3090 version of LINDO was used.
Recall that prior to generating the LP, the rows and columns of F are permuted (based on
the best known heuristic solution) so that x;, now, is the best known solution.

The constructive bounding method was tested on a number of problems from the literature
viz., Nugen.’s problems (6] of sizes 5-30, one problem of size 36 due to Steinberg [11] and
problems of size 42 and 49 due to Skorin-Kapov [10]. The initial optimal part was con-
structed by choosing constant entries £ such that § = bkv(D, F)/dsym, where bkv(D, F)

denotes the best known value for the QAP. Note that for this optimal part the optimal
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objective value equals the best known value. The LP corresponding to this optimal part is
generated and solved using LINDO. GLB is then applied to F,.,. We present the results in
Table 1. In the table BKV refers to the best known value for the QAP (which is optimal
for problems up to Nugl5), and CGLB refers to the lower bound for QAP(D, F) obtained
by using GLB to obtain the lower bound for QAP(D, F.,).

Among the existing lower bounds in the literature. GLB provides the best bounds for Nu-
gent’s problems of size up to 8. l{owever, for larger problems GLB does not perform as well
as eigenvalue based bounds. We consider two eigenvalue based bounds from the literature:
MEVB developed by Rendl and Wolkowicz {8], and IVB developed by Hadley et.al. [3].
MEVB provides better results than IVB for Nugent’s problems of size up to 30. However,
we do not have resuls from MEVD on problems of size greater than 30.

For problems of size greater than 15, we also performed another set of experiments by
varying the starting entry for the optimal part. Recall from section 4 that if the starting
entry £ is 0, M* = 0 and no transformations of the first type are possible. As £ increases,
M's |grow in size and A's shrink until A' = § when £ equals the maximum element in the
matrix F. We tried a few values of £ using IVB to compute the bounds for the residual
part. The results are presented in Table 2.

From the tables it can be seen that when our constructive method is used as a preprocess-
ing step, the bounds obtained (CGLB) are better than GLB for all the problems tested.
Even for larger problems, where the eigenvalue bounds seem to provide better results, con-
struction improves the bounds. Table 2 shows in bold the best bounds (CIVB) obtained
by constructing Fi,;, and evaluating IVB(D, F,.,). CIVB obtains better results than both
MEVB, where applicable, and IVB for all the test problems.

Eigenvalue bounds seem to improve if the spectral radii of the matrices D and F are
small [8). Though there is no closed form equation to evaluate the spectral radius sp(A)
of a matrix A, it obeys the following inequality due to Mirsky [5] sp(4) < m(4) =
RE T a?j - £(1r A)?) %, where trA denotes the trace of the matrix A. Performing trans-
formations to minimize m(F,.,) can be posed directly as a quadratic programming problem
with a convex objective function. Table 2 provides results with a linear objective function,

and we suspect that a quadratic objective might improve results even further.
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Table 1: Constructive GLB

Problem BKV _MEVB(D,F) GLB(D,F) OPTY(D,Fp) GLB(D,F,.,) CGLB(D,F)
Nugb 86 70 82 92.161 -9.604 84
Nug8 214 174 186 248.115 -42.112 206
Nugl2 578 495 493 618.792 -92.682 528
Nugl5 1150 989 963 1191.525 -149.254 1044
Nug20 2570 2229 2057 2687.272 -466.954 2222
Nug30 6124 5349 4539 6194.461 -974.015 5222
Ste36 9526 NA 7124 10795.224 -3316.368 7480
Sko42 15812 NA 11311 15836.092 -2698.571 13138

Table 2: Constructive IVB

Problem ¢ MEVB(D,F) IVD(D,F) OPI(D,F,p,) IVB(D, F.,,) CIVB(D,F)
Nug20 3 3229 7196 3480 ~1275.052 2206
4 4562 -2314.134 2248
5 5700 -3457.714 2244
Nug30 3 5349 5265 9595 ~4244.326 5352
4 12778 -7402.730 5376
5 15998  -10631.381 5368
SkodZz 5 NA 13830 37350  -23241.681 14110
6 44772 -30654.461 14118
7 52234  -38152.217 14082
Skodd 6 NA 20716 65858  -45018.698 20840
7 76838  -55974.705 20864
8 87808  -67007.763 20802

5. Conclusions we have proposed a new construction based approach to obtain-
ing lower bounds for the QAD. Qur approach is based on performing optimality preserving
transformations to decompose the QAP into two problems: one for which an optimal solu-
tion is known, and another to which any existing lower bound can be applied. This provides
a lower bound to the original QAP. Among existing lower bounds we considered GLB and
IVB ir our study.

We provide a set of lincar constraints to perform the transformations. A linear programming
problem LPLD is formulated and solved to complete the construction. We have improved
both GLB and IVD for all the problems tested. We conjecture that IVB may be improved
directly by formulating a quadratic objective function, and solving the resulting optimiza-
tion problem.

Though our method is developed for QAPs with rectilinear distance matrix, it can be ex-
tended to QAPs with distance matrices satisfying triangle inequality. Since our method
constructs Fope with known optimal solution such that F = F,,; + F.,, it has applications

to sensitivity analysis and may also be useful in branch and bound techniques.
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The major difficulty in mathematical programming is no longer
the solution of large models, it is the correct formulation (or re-
formulation) of the model. Large models are now solved routinely,
but their very size complicates the determination of how to make
repairs when the model is infeasible or otherwise nonfunctional.
One useful approach is to localize or isolate the problem to a
smaller portion of the whole model. This paper presents methods
and case studies in the analysis of infeasible mathematical
programs by isolating an Irreducibly Inconsistent Set (IIS) of
constraints.

An IIS is a set of constraints which is infeasible, but which
becomes feasible if any one member is removed. The IIS may consist
of only a few constraints when the total constraint set is very
large. The diagnosis of the problem in human-understandable terms

often follows directly from examination of the IIS. At worst,
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other algorithms or expert systems or humans need only operate on
the IIS, typically a much reduced portion of the entire model, to
arrive at a final diagnosis. This improves the overall efficiency
of the diagnosis and repair- process.

The paper presents the basic algorithms for I1IS isolation for
both linear and nonlinear programs, and their implementation in a
modified version of MINOS 5.3, known as MINOS(IIS), developed at
Carleton University. The algorithms are effective and quick in the
linear case. The time to find the IIS is often a small fraction of
the time to make the initial determination that the LP is
infeasible.

A specialized procedure for networks, which incorporates the
concept of nonviability analysis, is also presented. Nonviability
is a structural property of a network which a priori forces some of
the arc flows to zero, before the addition of flow bcunds or extra
side constraints. An ordered set of tests of an infeasible
network, including nonviability and IIS analysis, provides an
improved diagnosis. Unlike flow-balancing methods, the specialized
procedure is applicable to advanced netforms such as processing
networks.

The analysis of infeasible nonlinear programs is complicated
by the inability of nonlinear optimizers to determine the
feasibility of a nonlinear constraint set with 100% accuracy.
However, useful information can still be extracted which can help
in selecting a new initial point for the optimizer.

Case studies of analyses of infeasible linear programs,

networks, and nonlinear programs are presented.
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1. INTRODUCTION

In this paper, we investigate the facial structure of the polytope whose extreme poir*s
are exactly the mxp 0-1 block diagonal matrices (m, p € N). More precisely, we define a
matrix X to be block diagonal if there exists a partition R,, ... , R,, R,,, of its row-set and
a partition C,, ... , G,, G, of its column-set such that x;# 0 if and only ifi € R, and j €
C, for some 1 <1 < k (notice that what we really mean is that X is block diagonal up to
permutations of its rows and columns). We let

Smp = { X € {0,1}™ | X is block diagonal },

and we denote by Q, the convex hull of S, The goal of this paper is to provide a (parti-
al) description of the polytope Q,, by linear inequalities.

As explained in Crama and Oosten (1992), our interest for the polytope Q,, mainly
stems from its relation to the cell formation problem encountered in cellular manufactu-
ring. The data for this problem are generally assumed to be summarized in the machine-
part incidence marrix A, where a; = 1 if part j needs to be processed on machine i, and a;;
= ( otherwise. Recall that a group technology cell consists of a number of machines (a
machine-group) geared on the manufacturing of a number of similar parts (a part-family).
The cell formation problem asks for a partition of the machines into machine-groups, a
partition of the parts into part-families, and a matching between the machine-groups and
the part-families which cptimizes some measure of the inter- and intracell relationships. It
can be abstracted into the following block diagonalization problem: given an mxp
incidence matrix A and a function f(...), find an mxp block diagonal incidence matrix X
which minimizes f(A,X) (the function f(.,.) gives an estimate of the distance, or dissimila-
rity, between the original incidence matrix A and the 'ideal’ cellularized system repre-
sented by X). In Crama and Oosten (1992), we showed that, for many of the objective
functions f(.,.) proposed in the literature, the cell formation problem can be reduced to the
problem of minimizing a linear function of the variables x; (i = 1, ..., m; j = !, .... p) over
the polytope Q,,. Similar block diagonalization problems also arise in the analysis of large
data amrays (e.g. for marketing or archeology applications), in production planning for
flexible manufacturing systems, in sparse matrix computations, etc (se¢ Crama and Oosten
1992 for references).

In our presentation, we will often rely on a graph-theoretic interpretation of block
diagonal matrices and of the polytope Q,,. We follow the graph-theoretic terminology of
Bondy and Murty (1976). Moreover, when B = (U,V,E) is a bipartite graph and G =
(U,V,F) is a subgraph of B, we say that G is a complete bipartite partitioning of B if all
connected components of G are complete bipartite (we look at isolated vertices as
complete bipartite graphs). In particular, consider the complete bipartite graph K, = (U,,
V,.UaxV,), where U, = (uy,...,u,} and V, = {vy...s¥,). We regard an arbitrary mxp 0-1
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matrix X as the adjacency matrix of a subgraph G of K,,, say G = (U,,V,,F), where (u,v)
€ F if and only if x;; = 1. It is casy to see that the matrix X is block dxagonal if and only
if its associated graph is a complete bipantite partitioning of K.

This graph-theoretic interpretation stresses the analogy of the polytope Q,, with the
clique partitioning polytope P, investigated by Faigle, Schrader and Suletzki (1986) and
Grotschel and Wakabayashi (1989), and with the related multiway cut polytope studied by
Chopra and Rao (1991). In fact, Q_, can be viewed as the projection of P,,, on some
appropriate subspace. But this observation does not seem very useful in deriving a
description of Q,, from the results available about P,.

In Section 2, some general properties of facet-defining inequalities for the polytope Q,
are stated. In Section 3 specific families of facet-inducing inequalities are described.
Section 4 contains some lifting theorems. Finally, in Section 5, a technique is presented to
pawch facet-defining inequalities into new valid inequalities which, under certain conditi-
ons, also define facets.

2. PROPERTIES OF FACET-DEFINING INEQUALITIES

We describe in this section some general properties of facet-defining inequalities for the
polytope Q,, : two ’lifting’ results, relating facets of lower-dimensional polytopes to facets
of higher-dimensional ones, and one proposition describing the ’graphical’ structure of
facet-defining inequalities.

In our discussion, it will be often convenient to consider the polytope associated with
block diagonal submatrices of a given matrix, or equivalently, with complete bipartite
partitionings of a given graph. To define these concepts more accurately, let B = (U, V,,
E(B)) be an arbitrary bipartite graph, where, as before, U, = (u;,..n,} and V, =
{Vys--s%y}). The set of incidence matrices of complete bipartite partitionings of B is denoted
by Sg, and the convex hull of Sy is denoted by Q. Clearly, if B = K,y then Sy = S, and

= Q- In fact, the polyhedron Qg can be viewed in the space R™ as the face of Q,,
with the property that, for all X € Qg, x; = 0 when (i,j) € E(B).

The dimension of Qg is |E(B)|, since the subgraph of B containing no edges at all, as
well as any subgraph containing only one edge of B, are complete bipartite partitionings of
B. By the same reasoning, the rrivial inequalities x, 2 0 and x, < 1 are facet-defining for
Qg, for all ¢ € E(B).

Suppose now that B, and B, are two biparitc graphs on the same vertex-set, and
differing only in one edge (w,vy), for example E( B, ) = E ( B)) U {(u;,v)]. Our first result
follows directly from the sequential lifting procedure described in Nemhauser and Wolsey
(1988), combined with the observation that Qy, is a facet of Qg :

Propasition 1. Consider the valid inequality IT X < m, and assume that it defines a facet
of Qg,. Then, the inequality [T X + =, x, < m, defines a facet of Q, iff

my=my-max {[IX | Xe Sy and x,=1).

This proposition guarantees that, when a facet-defining inequality is derived for a
"partial’ polyhedron Q, this inequality can always be lifted to a facet-defining inequality
of Q,,. The following proposition shows that an inequality defining a facet of Q_, is also
facet-defining for each of the polyhedra corresponding to block diagonal matrices with at
least m rows and p columns. It is similar in spirit to Theorem 3.3 in Gritsche! and
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Wakabayashi (1990), Theorem 3.2 in Chopra and Rao (1991) and Theorem 2.2 in Deza
and Laurent (1992).

Proposition 2. Assume that the inequality [T X < =, defines a facet of Q,, and let a,b €
N Then the inequality I' Y <&, defines a facet of Qg Where I' € R***, 4, =, for
i<m and j<p, and ; = 0 otherwise.

Consider the inequality I X < n, and assume that it defines a nontrivial facet of Q.
Without any information about the numerical values of the coefficients ([I,x,), some
general structural properties of the inequality can be stated. To do this, associate with the
inequality two edge-sets E and E*, defined as follows:

E = { (v | (u,v)eB and = 0}, E* = { (u,v) | (u,vpeB and x, > 0}.

We call the graph H := ( V(E), E ) (respectively H* := ( V(E*), E* )) the support (respecti-
vely the positive support) of the inequality [ X < x,.

Proposition 3. If B is a nonempty bipartite graph, and ] X < =, induces a facet of Qj,
then: (1) m,>0;

(2) E'is nonempty;

(3) the support H of [] X <=, is connected;

(4) the positive support H* of [I X < n, is connected;

(5) V() =VE).
If moreover B is a complete bipartite graph, then:

(6) E\E" is nonempty, i.e. [T has negative elements;

(7) the support Hof [ X S @, is two-connected.

3. FACET-DEFINING INEQUALITIES

We present in this section various classes of facet-defining inequalities for Q. These
inequalities will be obtained by lifting facet-defining inequalities for a face Qg of Qup
(according to Proposition 1). Some of the subgraphs B which we will consider are
"squares’ (i.e. C,’s), so-called "spiked’ C,-free connected bipartite graphs and cycles.

For a given X € {0,1)™ and a given subgraph B of K, we use the shorthand x(B) to
denote the sum Z( x, | (u,v)) € E(B)).
3.1. Square inequalities

Crama and Oosten (1992) observed that the square inequalities :

Xy + Xy +Xy-Xg S2  (hjie (1,.,m}, jk € (l,...p})

are valid for S, (hence, for its convex hull Q,), and that they yield, together with the
integrality constraints on X, a valid description of S,,; that is,

Sep=(Xe€ (0,1)™ | x, + x4 +x,-%a52 forall hii e (1,.,m} and jk & {1,..p) ).
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In fact, it is easy to see that the square inequalities are facet-defining for Q,, and hence
we deduce from Proposition 2 that they are facet-defining for Q,,, for all m,p 2 2.

3.2, Facet-defining inequalities based on spiked C,-free connected bipartite graphs

The term ’'spike’ refers to special edges of the positive support H* of a valid inequality,
say I X < n,, or to the corresponding coefficients of I1. A spike-leaf of H*, or of [ X <
T,, is a vertex covered by exactly one edge of the subgraph H'. That covering edge is
called a spike. A spike-root is a vertex covered by a spike, but not a spike-leaf itself. For
example the square inequality X, + Xy + X, - X, < 2 has two spike leaves (vertices u; and
Vi), two spikes (the edges (u,,v,) and (u,,v))) and two spike roots (vertices u, and v)).

Notice that there are facet-defining inequalities whose support consists of exactly one
spike, namely the trivial inequalities x; < 1. It follows from Proposition 3(3) in Propositi-
on 3 that nontrivial facet-defining inequalities never contain spikes covering two spike-
leaves.

We say that a graph B is spiked if each vertex of B is covered by exactly one spike. We
say that B is a C,-free graph if it does not containany cycles of length four (i.c., C,’s).
The following holds:

Proposition 4. For k € N, if B is a spiked C,-free connected bipartite graph with exactly k
spikes, then the inequality x(B) < k defines a facet of Q.

In view of Propositions 1 and 2, the inequality x(B) < k defined in Proposition 4 can be
lifted to a family of facet-defining inequalities of Q,, for all m,p 2 k. A subset of this
family can be described explicitly. To achieve this, a new definition is needed: a subset C
of (U,xV,,)\E(B) is called a chord set for a spiked tree B if, for each path between two
spike-leaves of B, there is an edge in C linking two (arbitrary) vertices of the path. The
following proposition holds:

Proposition 5. For k e N and m,p 2 k, if B is a spiked tree with exactly k spikes and C is
a minimal chord set for B, then the inequality x(B) - x(C) < k defines a facet of Qg

To get better acquainted with these spiked tree inequalities, consider for instance the
special case in which the spike-roots u,, u,,..., u, of the spiked tree B are all adjacent to
the spike-root v,, as shown in Figure 1 below. A minimal chord set C for this tree must
consist of the following edges : for all i;j 2 2, (u,,v), and either (u,v) or (u,v). Carrying
out this construction with k = 1 or k = 2 demonstrates that the trivial inequalities x; S 1
and the square inequalities belong to the family of spiked tree inequalities.

Another subset of the family of facet-defining inequalities based on C,-free connected
bipartite graphs can also be described explicitly as follows. Let a spiked cycle be a spiked
graph whose spike roots induce a cycle (notice that this is a slight abuse of our general
definition of a spiked graph, since a spiked cycle is not a cycle; but this abuse is conve-
nient, and will not cause any confusion). A subset C of (U,xV,\E(B) is a chord set for
the spiked cycle B if, for each pair (s,t) of spike-leaves of B, and for each of the two
paths P, (i=1,2) between s and t, there is an edge e(s,t,P,) € C such that :

(a) e(st,P) links two (arbitrary) vertices of P, (i=1,2);

(b) e(s.t,P,) and e(s,t,P,) are distinct;

(c) if one of to the leaves s and t is covered by both edges e(s,t,P,) and e(s,t.P,), then one
of these edges covers s and t.
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Figure 1. A spiked tree.

Proposition 6. For all m,p 2 k 2 6, if B is a spiked cycle with exactly k spikes and C is a
minimal chord set for B, then the inequality x(B) - x(C) < k defines a facet of Q.

The smallest example of a C,-free spiked cycle is shown in Figure 2. Call this graph B,.

Uz V3

Figure 2. A spiked cycle with 6 spikes.

It is easy to sec that all of the edges (u,,vy), (U,,Vy), (U4, Vy), (Ug,Vs), (Ug,Vs) and (ug,vy)
must be in any chord set for B, but on the other hand, there exist various ways to
complete this list to a minimal chord set. As a matter of fact, it can be checked that each
of the matrices IT', IT* and IT° hereunder gives rise to a facet-defining inequality of the
form [] X < 6, derived from B, as explained in Proposition 6:

a— o . l
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1 100-11] 11-1-10 1] 1 1-1-1-1 1]
1 1-1-100 11-1-100 1 1-1-1 0-1
111100 011 1-1-1 011100
Mm={00-1 1-1-1] ITP=|00-1 1-1-1| M=(-1 0-11-10
00-1 111 1-10111 001111
[1-1 0 0-1 1] -1-100-1 1] -1 00-1-1 1]

The question arises wether it is possible to describe explicitly other, possibly more
general, subfamilies of facet-defining inequalities based on C,-free connected bipartite
graphs. In Section 5, we present a patching procedure which partially answer this question.

Some interesting variants of the spiked tree and spiked cycle inequalities can be gene-
rated by adding a single special vertex to B. This yields facet-defining inequalities whose
positive support is not spiked. Details are omitted from this extended abstract.

Let us finally observe that the incidence graphs of projective planes are very special
(non-spiked) C,-free connected bipartite graphs, which also give rise to interesting vaiid
inequalities for Q,,. Details are again omitted.

3.3. Facet-defining inequalities based on cycles

Let G be a cycle of length k, with k even. If k 2 6, then no component of a complete
bipartite partitioning of G, can contain more than two edges. Therefore, the total number
of edges of a complete bipartite partitioning of C, cannot exceed % k. If k is not a
multiple of three, then the inequality x(C,) < |%s k] is facet-defining for Qq.

Define now 3G, to be the graph induced by the three-chords of C, (a three-chord of C, is
an edge joining two vertices at distance 3 in C,). Then the following holds:

Proposition 7. For all k 2 4 and all m, p with k < 2min{m,p), the inequality
x(G) - x(3C) < |3 k]| is valid for Qe If k = 1 (mod3), then the inequality induces a
facet of Q.

4. LIFTING THEOREMS

Let vy € V. The covering c(v;) (also denoted as ¢(v;), when no confusion can arise) of
a vertex v; with respect to the valid inequality IT X < 1, for Qg is defined as follows:

cn(v) =T -max (X |X e S,,andx,=0foralli=1,2, ..m).

(A similar definition would of course apply to any vertex u, € U,). The covering of an
arbitrary vertex is always nonnegative. The covering of v; is zero if m; = Q foralli= 1, 2,
..» M, i.¢. if v, is not covered by any edge in the support of the inequality.

A tght inequality is a valid inequality for Q,, with the property that there exists a
complete bipartite partitioning X satisfying the inequality with equality, and such that ali
vertices having a strictly positive covering with respect to the inequality are in the same
connected component of X (it can be checked that all square inequalities are tight).

Finally, call U-extension of K, the graph B obtained from K,, by adding a vertex u,,
to U, a vertex v,,; to V,, and all the edges between u,,, and V,U(v,,,}; that is,
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B = (UuL{uguls Vulveu)s UaxVIO({ug JxV I N Ug V) )-

The following statement describes how a tight facet-defining inequality for Q,, can be
lifted to a facet-defining inequality for Qy:

Proposition 8. Let I1 X < r, be {tight facet-defining inequality for Q,,. Let the inequality
I' Y <, be constructed in the following way:

T, if (w,v) € UpoxV,;
Y = cn(v) ifi=m+l and v e V,;
P
Lyt Cn(V) if i =m+1 and j = p+1;

| 4
Yo = o + Iy Cn(Ve)-
Then the inequality I' Y < ¥, defines a facet of Qg, where B is the U-extension of Ko

Proposition 8, together with Propositions 1 and 2, implies that the inequality 'Y <y,
can in turn be lifted to a family of facet-defining inequalities for Q,n2mq2p) A
special subset of such inequalities, which we call 'totally spiked tight inequalities’, can be
described explicitly. A rotally spiked inequality is an inequality I1 X < 1, whose support is
spiked, and such that the spiked solution S, defined by s; = 1 if and only if {u,v)} is a
spike, satisfies [1 S = =, A simple example of totally spiked inequality is again provided
by any square inequality, or by any of the facet-defining inequalities described in Section
3.2. Now, our next proposition allows to lift totally spiked, tight, facet-defining inequali-
ties for Q,, to totally spiked, tight, facet-defining inequalities for Q,,, » (of course, a simi-
lar result holds for Q,,,,). When stating this result, we assume that the spikes, the spike-
roots and the spike-leaves of the inequality are numbered in such a way that spike-root i
and spike-leaf i are covered by spike i.

Propasition 9. Let IT X < m, be a totally spiked tight inequality defining a facet of Q.
Let v, and y; be defined as in Proposition 8 for all edges (u,,v)) of the U-extension of K,
and let ¥y = L, ,juw [ ®a 1 if u € U, and j = p+1. Then, the inequality ' Y S ¥, is a
totally spiked tight inequality defining a facet of Q,,,,.

5. PATCHING FACET-DEFINING INEQUALITIES

Sometimes, familics of valid inequalities, or even facet-defining inequalities, can be
constructed by combining together a number of other valid inequalities. This section
presents such a parching procedure. For simplicity, we assume that only two valid
inequalities for Q,, are to be combined, say AX < a, and BX < b,. We denote by A and
B, respectively, the vertex-sets of the supports of these two inequalities; A and B are
assumed to be disjoint. We define the neighborhood of a vertex i with respect to A to be
the set N (i) := ( j : a; > O } (similarly for B). Notice that a vertex is not in its own
neighborhood.

Now the patching procedure can be roughly sketched as follows. It makes use of the
concept of covering introduced in Section 4. First, vertices having a strictly positive
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covering with respect to AX < a, are selected in A, in such a way that their neighborhoods
with respect to A are disjoint; an equal number of vertices are selected in B in a similar
way. Then, the selected vertices from A and B are matched. The graph K, for which a
valid inequality T Y <, will be derived, is the complete bipartite graph induced by the
union of the vertex-sets A and B. Construct now the coefficients of the inequality I'Y <
Yo as follows:
[ g ifue Aandv,c A,
b, i) ify,e Bandvje B,
min { cg(uy), c(v)} if (u,v)) is a matched pair, u; € Bandv;e 4,
Y; = 4 min { ¢, (w), cg(vp} if (u,v) is a matched pair, € A and v, B,
- Y if (u,,v,) is a matched pair, i, € N,(u,) and v; € Ng(vy),

or y; € Ng(uy) and v; € Ny(w),

4 otherwise,

L
= a, + by

Proposition 10. The inequality I' Y <1, is a valid inequality for Q,,.

Propeasition 11. If AX < a, and BX < b, are valid inequalities for Q,, which have been
obtained by patching together a number of spiked trec and spiked cycle inequalities, then
the inequality I' Y < v, obtained by patching AX < a, and BX < b, as explained above is
facet-defining for Q,,.
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1. INTRODUCTION

For more than a decade already, modeling, methodological research and software
development for stand-alone decision support systems have belonged to the scope of
our department. Both on mainframes and PC’s, we have had several joint project
with the Hungarian Electricity Board on electrical energy optimization problems,
projects on inventory and production control have been carried out in the steel
industry, smaller special applications, for example menu planning for hospitals, op-
timal design of trusses for a bus manufacturing company must also be mentioned
among the succesful applications.

In our department, research and software development on group decision support
began in 1989 only, by a small team {1]. The reason for the increasing interest
for such systems is quit simple: in today’s organizations decisions are made mostly
collectively. As managers spend more of their time in meetings, the study of infor-
mation technology to support meetings becomes increasingly important.

Several type of group support systems have been developed by the Group Sup-
port Systems research community, varying from collaborate writing to computer
supported negotiation and decision making. A Group Support System can support
meetings, which are distributed geographically and temporally. Tasks in a group
decision situation include communication, planning, idea generation, problem analy-
sis and design, problem solving, negotiation, conflict resolution, collaborative docu-
ment preparation. Group support systems should provide the sharing of information

among group members and between the group and computer. Decision makers may
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get individually all the necessary information they need, and, in some extent, they
can carry out their task-dependent decision process also individually. The group
support system should help in defining and formalizing the decision problem for the
group. The system should provide the necessary data, tools and methods for solving
the specific decision task individually. Last but not least, the system should help to
achive the result satisfactory for all group members.

The basic concept for us has been to develope a rather flexible framework, which

- has an attractive user interface,

- is adjustable to different type of group decision situation,

- is able to integrate the knowledge and experiences, accumulated over the last
decade in our department on stand-alone decision support system design and devel-
opment.

Within three years, a PC based system working in the MS WINDOWS envi-
ronment has been realized. At present, we are like conducting a mission with our
WINGDSS system in the really difficult process of convincing people to use com-
puters for supporting their group decision problems, but the real life applications of
WINGDSS should convince its possible users about its higher efficiency.

WINGDSS has already been proved very helpful in evaluating bids for tenders.
for example at the Tender Bureau of the Hungarian Telecommunication Company.
We developed a model for appraisal of hotels for the State Property Agency. At
the Ministry of Welfare, the purpose of the usage of WINGDSS is to support bud-
get allocation processes for social institutions. We are \\'orking on extending the
applicability of our system for more complex problems, for example in environmen-
tal impact analysis problems. Our experiences collected with real life applications

define new directions for further developments in WINGDSS.

2. WHAT KIND OF GROUP DECISION PROCESSES
ARE SUPPORTED BY WINGDSS ?

The decision problem can be typifed as follows:

A group of experts from different fields but with a common interest has the task of
ranking certain alternatives characterized by a finite set of properties or attributes.
Attributes can be factual data and subjective factors. Applying a proper utility
function to the set of alternatives leads to a ranking of the alternatives accord-

ing to their numerical values. The individual ranking will reflect the individual
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preferences, group ranking, in addition, will incorporate the differences of priorities
and the expertise of decision makers. The arrival to a group ranking satisfactory
to all members is supported by a series of possibilities for the interactive usage of
WINGDSS. The system provides userfriendly tools for a lot of operations that can
be carried out in the decision process during program execution, on-screen, by the
users themselves. Practically, feedbacks from the individuals can be integrated at
any stage of the decision process. The system is always ready for updates.

In the past, stand-alone PC-s were more frequently used in Hungary than LANs
and workstations, this is why the present version works on a single PC. In spite
of that, the system provides the athmosphere of a decision room with networked
computers: task formulation, idea generation, and team building is supported in
many ways, but at the same time, the individuals’ privacy is ensured as well.

The group decision process is concerned as a three-phase event:

- the preparation of the decision task,

- the process of individual evaluation,

- the phase of aggregation (group result processing).

This concept defined three main menu groups for a virtual separation of the
activities, however, they do not describe the sequence of actions obligatory: moving

back and forth among the different phases is possible at any stage.

2.1 Task preparation phase

The key problem is transforming the actual decision task into an appropnate form.
Idea organization is one of the main issues in a decision process. The hierarchy of
criteria is a tree in our wingdss: one starts with the most general criterion, which
corresponds to the root of the tree, and gradually decomposes it to more specific
criteria. The leaves represent the criteria, which can be evaluated independently
from each other. Some decision problems can be represented with a tree of several
levels, while others are less decomposable. In the earlier versions of WINGDSS,
variables defined at one leaf criterion were not reachable at the other leaves. The
third version eliminated this drawback by separating the definition and storing of
the variables from the definition and storing of the tree—~components.

Creating and modifying the criterion tree with on screen operations is technically
possible due to a modul, which is applicable to graph handling tasks separately
from the WINGDSS system as well: nodes and subtrees can be constructed, moved,
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copied, deleted, renamed and arranged in several ways.

The data of alternatives can be typed in directly or they can also be selected from
an outer database. Any database handling system, running under MS Windows, can
be fitted to WINGDSS. A methodology for selecting records from the outer database
can also be defined from the WINGDSS, providing a screening on the alternatives.

The evaluation of the alternatives starts at the leaf criteria, with functions defined
ezlusively to the actual decision task. Finding the appropriate functions and / or
procedures is also a key problem in decision support. Thanks to an interpreter buiit
into the WINGDSS, the functions can also be created or modified on screen by any
authorized individual. The system offers a collection of ready made functions as
well. Version 3.0 has already the capability of integrating program solvers.

Once the problem has been set up in the necessary form, the next steps are,

- for each decision maker (DM), to assign weights to each criteria reflecting their
importance,

- to assign weights - voting powers to each DM at each criteria, expressing the
DM'’s competency in evaluating the criteria.

We assume the presence of a system facilitator or supervisor, who, with on screen
operations, composes the decision group, determines the individuals’ authorities,
and assigns the voting powers. The authorities include the right to construct and
modify the decision task (criteria, alternatives, evaluation procedures), the right for

participating in the individual and in the group decision process.

2.2 Individual deciston phase

Criteria are factual or subjective data. The functions or procedures defined at the
leaf criteria must be identical for all group members, but the values of these func-
tions are equal on factual data only. The result of the decision makers’ individual
evaluation will still vary due to the diversity of preferences. The weights expressing
the preferences of a DM should be given explicitly, but we plan to integrate methods
for this process. The function values on the subjective criteria are very likely de-
pendent on the experts’ opinion, and the individual preferences will modulate these
differences further. The final score of an alternative during the individual decision
process will be calculated as the weighted average of the function values, starting
at the leaf criteria, combining them with the weights, and then proceeding toward

the root of the criteria tree. The mathematical formulation is relativly simple:
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Consider a decision problem with | group members D,...D;, n alternatives
Al -o-A" a-nd m criteriacl .--Cm .

Denote the result of the individual evaluation of decision maker D for alternative
k
55"
differences in dimension of the attributes has already been settled.

Let w! > 0 weight assigned by Di to C;, i =1...m at each branching of the

tree.

A; on each leaf criterion C; by. a Assume that the problem arising from the

The calculation starts at each simple subtree (denoted by N') consisting from leaf

criteria and their father, by the formula

k_k
k ZiGN' wya, ,

Hy = J=1...n, k=1...1 (1)
! ient wf

The pf value is assigned to the root of this simple subtree. The calculation
proceeds toward the root of the criterion tree with combining the weights on the
higher level criteria with values resulted from one level below. The individual utility
given by Dy for A; will be assigned to the root.

Note that an additive multiattribute model is only applicable to the decision

problems when the additive independence of the criteria can be proved [4], [5].

2.3 Group ranking phase

For objective attributes only the weights given by a decision maker will be revised
(at each criterion) by the voting power for weighing. However, in case of subjective
attributes, not only the weights but also the evaluation itself (the af'j values) will
be modified at the corresponding leaf criteria by the voting power for qualifying,
where

V(w)¥ is the voting power assigned for D for the DM’s weighing on a criterion
C;, and

V(q)*¥ is the voting power assigned for Dy for the DM’s qualifying on a subjective
leaf criterion C;.

Now the method of calculating the group utility of the alternative A; is carried out
on the tree of criteria, basically in the same way as it has been done by calculating
the individual utilities.

First we aggregate the weights at each node i and get the group weights:
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‘_le,'-‘wf‘ )
M=Z£T=‘T(;()7)§—, 1...m. (2)

Then we compute the aggregated qualification at each leaf criterion C; and get

the group qualification at the leaves for each alternative A;:

— Zi:] V(Q)n":af,j

The group utility of A; is the result of the linear combination of the aggregated

Qg’j , iEN', j=1...n. (3)

qualification values with the aggregated weights (proceeding from the leaf level to-

ward the root):

UJ-—_-Z—'% 1=1...n (4)

LW

A correct group utility function must satisfy the axioms given in [6]. The function
(4) appearently used in WINGDSS is appropriate in this respect.

The third main menu group provides various possibilities to compare the decision
makers’ individual weighing and evaluation. The opinions of other group members
will often cause one member to reconsider and modify his evaluation. Such feedbacks
can be realized by WINGDSS: any decision maker is allowed to activate the appro-
priate menu again for performing modifications in the evaluation of the subjective
criteria or for changing his/her preference structure (the individual weights on the
criteria). Changes in the structure of the decison task, and /or in the function at

the leaf criteria can be performed by the Supervisor or any authorized user.

2.4 Sensitivity analysis of the result

Analysis the impact of certain decision parameters (individual preference struc-
ture, voting power of decision makers) to the final result can be performed with a
method developed separately (8], integrated recently into Version 3.0. The algorithm
can be used for different purposes:

- What are the intervals in which the weights can vary without effecting the
ranking of the alternatives?

- If the weights are allowed to vary in given intervals, how the value and position
of the alternatives will be changed?
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- What kind of transformations are needed to change the position of one particular
alternative (to make one low ranked alternative acceptable, for example)?

- If group members will agree in the ranking of a subset of the alternatives (the
top set of one, two, three, four-. .. alternatives), what changes are required in the
weights?

3. TECHNICAL DATA

Distributional format:

One floppy disk of 740 KB or higher.
Hardware requirements:

IBM-PC/AT 386 or 486, VGA card, mouse.
Operating system:

PC-DOS 3.3 or higher.

Software requirement:

MS Windows operating environment version 3.0 or higher.

How THE AUTHORS DID CONTRIBUTE TO WINGDSS?

Tamas Rapcsak and Piroska Turchanyi are the present managers of the Group
Decision Project, together with Kriszta Keller, they also carry out research and
modelling. The tree handling modul and the handy interface for data input has
been developed by Péter Csdki. Levente Csiszar has been working on the interface
to program solvers, on the interpreter for the criteria evaluating functions, on the
methods both in the individual and group evaluation phase. Ferenc Fdlsz has been
responsible for any kind of data base functionalities. The sensitivity algorithm 1s

from Csaba Mészaros.
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Global optimal solutions with tolerances
and practical composite laminate design

Tibor Csendes! Zelda B. Zabinsky! Birna P. Kristinsdottir!

Consider the nonlinear optimization problem

min f(z) (1)
where f(z) : R™ — R is a continuous nonlinear function, and the variables
are subjects of the constraints

95(2)50 j=1’2!“"m’ (2)

where g;(z) : R — IR are also continuous functions. Let us denote the
set of feasible points by A, that is A := {z € R" : gj(z) < O for each
Jj€(1,2,...,m)}.

It happens many times that the solution z* (or an approximation of it)
of a constrained nonlinear optimization problem is known, yet this result
is not suitable for practical use. It is the case when the solution should
be realized with a certain tolerance § > 0. If, moreover, at least one of
the constraints is active at the solution, then the n-dimensional interval
[z} — 6,z] + 6] for ¢ = 1,2,...,n is not entirely feasible (cf. [5] and {8]).

From practical point of view, it would be better to have a suboptimal
solution in the form of an n-dimensional interval X* (i.e. for which f(z) <
f(z°) + € and g;(z) <05 €(1,2,...,m), where z € X*, and € > 0). Such
a result interval would also reflect the sensitivity of the objective function
for changes in the arguments on the set of feasible points.

*Kalmér Laboratory, Jéssef Attila University, Sseged, Hungary
tIndustrial Engineering Program, University of Washington, Seattle, USA




111

In contrast to interval optimization methods like [2], here an algorithm
for finding a large feasible n-dimensional interval for constrained global op-
timization is presented. The resultant interval is iteratively enlarged about
a seed point while maintaining feasibility. An interval subdivision method
is used to check feasibility of the growing box. The algorithm utilises the
inclusion functions {1,4,7] of the objective and constrain functions. These
are calculated by natural interval extension. The resultant feasible interval
is constrained to lie within a given level set, thus ensuring it is close to the
optimum. It is proved that the algorithm converges in a finite number of
iterations.

The ability to determine such a feasible interval is useful for exploring
the neighbourhood of the optimum, and can be practicaily used in man-
ufacturing considerations. The numerical properties of the algorithm are
tested and demonstrated by an example problem, and the procedure is ap-
plied to a real life engineering design problem to construct manufacturing
tolerances for an optimum design of composite materials.
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I = INTRODUCTION

This paper investigates the properties of a class of integer
programming mcdel applied to a production planning problem.
Each product may require processing on several machines and may
involve precedence relationships. The machines are already
(partially) committed and only the residual capacities of each
machine in each time period of the planning horizon are available
for use. The problem is to efficiently deploy unused capacities
by determining, subject to market conditions, a production
schedule. The mcdel lies at the heart of a decision support
system for advising sales executives in determining the products
on which to focus their efforts. The models can be
computationally demanding and techniques for speeding up solution
times are highly desirable. Various preprocessing techniques
have been investigated and their effectiveness evaluated. In
addition, a number of cutting plane approaches have been applied.
The performance of these approaches which are both general and

application specific is examined.
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II = THE MODEL

The production environment is made up of a set of
manufacturing cells, e;ch of which may have an amount of
unallocated capacity (resource) in each of a set of time periods
over the planning horizon. Each product can be produced according
to a number of production structures, each of which specifies the
cell resources required per unit of product in each of the

(cell,time period) combinations used in the structure.

Let the following parameters define the size of the problem:

np = number of products

ns = number of production structures
nc = number of manufacturing cells
nt = number of time periods

And let (i,j,k,t) be the index set as defined below.

i: product, i =1...np

J + production structure, j =1...ns
k : manufacturing cell, k =1...nc
t: time period, t =1...nt

The problem data and the variables are:

CPyyxe = the amount of capacity used per unit of product i
produced according to structure j, on cell k ,
in period t
sp,, = the spare capacity for cell k in period t

limprod; = market size for product i

profit per unit of product i

=
]




115

1,y = the minimum production Quantity of product i,
when produced according to structure j

u;; = the maximum production quantity of product i,
when produced according to structure j

[}

X4 number of units ofm'product i, to be produced
according to production structure j

{1 1f product i1 is produced according to structure j
Yiy =

0 otherwise

The problem can be formulated as:

np ns
max Yy vy (Y xy)
i=1

J=1

st:
np ns
Y Y cDije X5y S SPye (1)
=1 51
k=1..nc
t=1..nt
ns
x;3 < limprod,; (2)
J=1
i=1..np
Xy - 1lyy¥i;20 (3)
Xgy = Ug; ¥Yi3 <0 (4)
i=1..np
j=1..ns

X;; 2 0 and integer, y;; € {0,1)

Constraint set (1) states that the total amount of resource
used in cell k, time period t, must not exceed the spare
capacity; constraint set (2) represents the market size for each
product i; and constraint sets (3) and (43 state the minimum and
maximum quantity of product i, when produced according to

structure j.
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I1I - PREPROCESSING

In order to obtain a tighter formulation to the problem the

following preptocessingitechniques have been investigated.

1) Euclidean reduction {HP-91]
i)For each capacity row (constraint set (1)) let kexp be the

smallest nonnegative integer such that:

Cijxe*10%® is integer for all i, j
ii)Find K the greatest common divisor of the resulting integer
coefficients;
iii)Multiply the row by 10*® and divide both sides by K;
iv)If the RHS after the division is not integer a tighter
representation may be derived. Since the constraint type is ’less
than or equal’ the RHS can be truncated to the next lowest

integer.

2)Redundant constraints (BMW-75]
For each capacity row:

i)Compute the constraint upper bound:

Since cp;y., is nonnegative for all (i,j.k, ¢t):

np ns

Upe = ;1 ;:1 CDyyxe Uyj

ii)The constraint is redundant if:

Uye < SPy.
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3)Singleton rows [BMW~75]

Consider a capacity constraint such that:

n, n,

Y. Y. CPyjie Xy5 S SPye
1=1 ja1

where cp,;;,=0 for all i+*g and j*h

Then let:
u' = _SPxe
v Cx)ghkc
If:
i)up < u, replace u, by L up ]

ii)u,, <1, fix x, =0 and y, =0

Remove the constraint.

4)Infeasibility and simple redundancy (HP-91]
In this form of preprocessing redundant constraints may be
identified and removed. The procedure is as follows:
i)In each capacity row, determine the nonzero count.
ii)For the rows with equal nonzero count determine rows whose
nonzeros match exactly both in terms of value and column number.
iii)When two rows agree, check their RHS:
a)if the RHS are equal, remove one of the rows;
b)if one inequality dominates the other, remove the dominated
one.
This technique can be extended to detect infeasibilities in
the form of conflicting constraints. However the capacity
constraints of the model are all ‘less than or equal to’ and

therefore this possibility cannot arise.
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1Y = CUITING PLANES

The most efficient way to get a tighter formulation for an
integer problem is to incorporate strong valid inequalities. We
have investigated two classes of valid inequalities.

The first relates to a reduced form of the model. Consider
the bounding constraints (3) and (4). Replace these constraints

by the aggregate bounding constraints (5) and (6).

ne

; (X;5 = 14y ¥Vig) 20 ()
-1
ng
E (x;5 - uyy y“) <0 (6)
J=1

i=1..np

The new model is a relaxation with 2np(ns-1) fewer bounding
constraints. If any of the original bounding constraints are
broken they can be introduced as cuts to the new model.

For the second approach, we consider the capacity rows
together with constraints (3) and (4) and reformulate them as a
single node fixed charge flow.

Given :

np ns

E ; CPjiyxe X535 S SPye
- )

XU - 111 y-ij 2 0
XU - uij yij <0

k=1l..nc, t=1,..nt

i=1..np, j=1..ns8

Let:
x'ﬁ = CPa X/ u'-_. = CPa Uy/ 1} = CPx 1

and relax x; to x; ¢ R
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We get the single node fixed charge flow model

np ns
=1 J=1

- k=1..nc, t=1..nt
l'uy,,s X'yy S Uy Yy
i=1..np, j =1..ns

Suppose there exists C (a generalized cover) such that:

1 = ; u!j - Spkt > 0
1,J€cC
Let:

u 2 max(A, pax uyy) ., Uy = max(u, ugy),
.J €

and T = {(i,7) / (i.37) € C)
Then:

g: [x'y, + (1 - y,,) (u'y, - A)°] + E [X'yy - iy (u—i; -A)} < sp,,
i,Jec 1,)€?

where (u'yy; - A)* =max (u';y; - A, 0)

is a valid inequality for the single node fixed charge flow model
(VW-86].
These procedures are not restricted to this class of problem

but have widespread applicability (VW-87], [PW-91].

A production planing model to advise sales executives on the
products on which they should concentrate in order to efficiently
deploy unused factory capacities has been developed. To speed up
the solution process, a set of preprocessing techniques and valid

inequalities have been investigated. Experimental results for a
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range of model sizes (to be reported) indicate that the

procedures have a beneficial effect.
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I. INTRODUCTION

The application considered 1in this paper is the
determination of an annual, day-by-day, schedule for a
fleet of United States Coast Guard cutters within a given
geographical area. The tasks assigned to the cutters are
varied and include patrolling in specified districts of the
area, training exercises and maintenance. The feasibility
of a particular cutter schedule is governed by a set of
operational rules that depend, in part,-on the timing and
nature of the tasks already assigned to the cutter prior to
the start of the scheduling year in’ question. Other
factors include transit allowances before and after a task,
the duration of in-port time after the completion of a task
and cutter capabilities. The requirements placed on the
fleet fall into two principal categories. The first
relates to minimum levels of cover in terms of the number
of cutters of given classes on patrol in each area at any
given time. The second category of requirement coricerns
training and cutter maintenance. In these cases upper
limits are placed on the number of cutters undergoing these
tasks at any given time.

oOne approach to modelling scheduling problems of this type
is to generate, for each cutter, a set of possible
schedules, and to determine the ‘best’ fleet schedule by
selecting one of the possible schedules for each cutter.
This formulation leads to an integer programming model
which has been widely advocated (e.g. [2]) in various
guises.

However, in many scheduling applications, especially in the
area of vehicle scheduling, the 1list of '‘requirements’
often results in the non-existence of a feasible solution.
In such cases, a relaxation of the requirements is
necessary in order to obtain a schedule. on further
examination of the practical issues it is frequently the
case that some of the ‘requirements’ merely reflect
desirable characteristics rather than strict requirements.
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In developing a scheduling model that yields useful
solutions, Darby-Dowman and Mitra (1) proposed the extended
set partitioning model which was essentially an integer
goal programming formulation of a set partitioning model
and admitted set covering, set packing and set partitioning
as special cases.

In that model, the requirements were treated as targets and
undercover (below target) and overcover (above target) were
allowed but penalised. Our approach to the cutter
scheduling problem follows a similar vein.

II. MODELLING THE SBCHEDULING PROBLEM
Within the operational rules that govern the tasks and the
cutter duties, a set of possible schedules is generated for
each cutter. An optimal schedule is one which is as close
to meeting requirements as is possible. The generic model
is statad below:
Parameters: nc = number of cutters to be scheduled
n, = number of columns (possible
schedules) for cutter Kk,
k=1,2,...nc

nt = number of time periods in the
scheduling year

ng = number of constraint groups (schedule
’‘requirements’)

Index sets

i : schedule requirement, i = 1,2,...nq9

time period, j = 1,2,...nt
k : cutter identifier k = 1,2,...nc
1l : identifier of possible schedule for

cutter k
1=1,2,...n

Xy = 1 if the 1’th possible schedule for cutter k
is selected

=0 otherwise

u; Extent of the under-achievement in respect
of schedule requirement i in time period j.

o; Extent of the over-achievement in respect of
schedule requirement i in time period j.
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Model Coefficients

ay =1 if the 1’th possible cutter schedule for
cutter k contributes to schedule requirement
i in time period j.

=0 otherwise.

r, : target/limit/threshold for schedule
requirement i in time period j in terms of
number of cutters contributing to the
schedule requirement.

w;(20) = Penalty for each unit of under-achievement
in respect of r;

whi(20) : Penalty for each unit of over-achievement in
respect of r;

Model

nt

ng
MinY Y (wouy v w0
i=1 J=1

subject to

nc Ny

_ i1=1,2,...ng
Z AyaXer ¥ Uiy T 045 T Tij 5 = 1.2, ...n¢
<)
ny
Y x,=1 k=1,2,...nc
1=
k=1,2,...nc
xp €00,1) G - 717200 0 0,
arks e de

(1) The model is stated in a generic form. In any given
application instance, simplifications may be possible.

For example, if schedule requirement i is such that r;
represents a desired lower limit then the penalty for over-
achievement, w*;, can be set at zero and o; considered as a
logical variable. Similarly, if schedule requirement i is
such that r; represents a desired upper limit then the
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penalty for under-achievement, W; can be set at zero and u;
considered as a logical variable.

(2) The number of time periods in the scheduling year is
a matter for judgement in relation to the individual
application. A day-to-day schedule covering one year is
required. Thus in its simplest form, nt equals 365 or
366. However, model size and hence solution time can be
reduced by considering a larger time unit. In certain
cases this can be achieved without loss of model validity.
For .example, if the duration of tasks and activities is
always an integral number of weeks, the problem can be
modelled on a week-to-week basis with nt reduced to 53.
Even if the duration of tasks and activities is not always
an integral number of weeks it may still be worthwhile to
adopt the time unit change in order to obtain solutions
more quickly with a possible sacrifice on solution quality.
This aspect is investigated in section 3.

(3) The cutter scheduling problem reported here has the

following size parameters. There are 30 cutters to be
scheduled. There are 9 sets of schedule requirements, S
of which represent desired ninimum 1levels with the
remaining 4 representing desired upper 1limits. The

minimum levels/upper limits are invariant through time and
range from a value of 1 to a value of 5.

III. TIME UNIT COMPRESSION

A major factor influencing the difficulty with which the
model may be solved is the number of constraints. Each
scheduled requirement results in (nt) constraints. As
stated in the previous section the most natural form of the
model has (nt) equal to the number of days in the year (365
or 366). With 9 (sets of) schedule requirements, the
model would have over 3000 rows. In addition the colunns
are very dense with, typically, 200-250 nonzeros per
column. The idea of developing a ‘coarser’ model in which
each time period is increased in size (e.g. from 1 day to
7 days = 1 week) is attractive in significantly reducing
the size of the model both in terms of the number of rows
and the number of nonzeros. Clearly there may be a
reduction in solution quality since the model may be a less
precise description of the scheduling problen.

The activities performed by the cutters involve patrolling,
maintenance and training. Each of these activities takes
place in various forms. For example, the area within
which patrolling takes place is divided intc various
districts, each with its own requirements in terms of
cutter coverage. Additionally there are activities such
as transit between tasks and necessary time spent in port.
With the exception of transit times, the required durations
or range of durations of the tasks tend to be specified in
terms of an integral number of weeks and, as a conseguence,
the time unit compression from days into weeks appears more
likely to be viable. Some tasks (e.g. training and
maintenance) are required to start on a specified day of
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the week - but not necessarily the same day of the week.
It is for this reason that the weekly model introduces an
element of approximation compared to the daily model.
Consider the example shown in Figure 1. Suppose that the
time unit compression is such that each Monday through
Sunday time period of 7 consecutive days is considered as
one new time unit. Suppose further that a training task
is required to start on a Monday and a maintenance task is
required to start on a Wednesday. Then in the example,
training takes place in week k since it takes place on
every day of week k. However, the maintenance task takes
place only for part of week k. In converting from a daily
to a weekly model, the question of whether a given task
takes place in a given week must be addressed.

Day:...F,S T, W S W .o
Week k-1 Week k Week k + 1

| === ——

Training
| e
Maintenance
ur 3 S a example

The proposed model treats this issue conservatively such
that a feasible weekly schedule, when converted back, will
necessarily yield a feasible daily schedule. To achieve
this, the treatment depends on the type of constraint
considered. The schedule requirements are specified in
terms of desired upper limits (implied less than or equal
to constraints) or desired lower limits (implied greater
than or equal to constraints). In the former, over-
achievement is penalised whilst in the latter, under-
achievement is penalised.

The constraint coefficients of the weekly model are
therefore determined as follows:-

If the constraint group (schedule requirement)
i is a ’desired upper 1limit’ type constraint
then

ag =1 if the 1’th possible (daily)
schedule for cutter X covers

all 7 days of week j

= 0 othervise

If the <constraint group (schedule
requirement) i is a ’‘desired lower limit’
type constraint then
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ag =1 if the 1’th possible (daily)
schedule for cutter k covers

any day of week j.
=0 othervise

The overall modelling Strategy is illustrated in Figure 2.
The daily model is generated and converted to a weekly
model as described above. The weekly model is then solved
and the solution in terms of a weekly schedule for each
cutter is obtained. These weekly schedules are matched
with the schedules of the daily model to obtain daily
schedules which are then post-processed. The post-~
processing performs a series of quick local optimisations
which apply daily time shifts to patrolling tasks whenever
such shifts lead to local improvements

Generate daily model

Convert to weekly
model

Solve weekly
model

convert weekly solution
to daily solution

Post-process the
daily solution

Figure 2: Overall Modelling Strategy
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IV. BSUMMARY

A practical model for determining an annual day-by-day
schedule for a fleet of United States Coast Guard cutters
has been developed. The model was made computationally
more tractable by considering a smaller number of larger
time periods. Resultg (to be reported) indicate that
little is sacrificed in terms of solution quality by
adopting this form of time unit compression.

In common with many scheduling problems, the simultaneous
satisfaction of all requirements may not be possible. The
use of what is essentially an integer goal programming
model ensures that model feasibility is assured. The
solution is either a completely satisfactory schedule or as
near to one as is possible.

The model lies at the heart of a decision support system
that is in the process of being implemented by the United
States Coast Guard.
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1. INTRODUCTION

Languages for representing Linear Programming Models for optimization are well
established. These languages follow a simple algebraic structure to represent the
linear form restrictions and are adequate for a vast range of LP models.

There are many experimental and commercial systems of this genre which are used
by industry, for an uptodate review of such systems the reader is referred to (Steiger
and Sharda,91), (Greenberg,91). Most modern modelling systems enable the
modeller to specify models in a declarative algebraic language. A set of algebraic
statements in a modelling language both specifies and documents a model, whereas
the generation of a machine readable constraint matrix takes place in the background.

It is now increasingly realized that alternative modelling paradigms such as database
modelling, mathematical programming modelling, simulation, logic programming and
programs written in a high level computer language are essentially different forms of
knowledge representations as perceived by the AI Community (Geoffrion, 1990),
(Mitra, 1989). Knowledge expressed in a declarative form and knowledge specified
in a procedural form are two main approaches to knowledge representation.

In this paper we first identify an important deficiency of many known Mathematical
programming modelling languages. These languages are well designed to represent
large classes of LP and IP models in the declarative form. A wide class of other
optimization models applying to many real problems such as crew scheduling, cutting
stock, VLSI routing and ship scheduling provide instances of models which are highly
dependent on domain knowledge.  For these models the domain knowledge
concerning the rules of crew duties, alternative ways of defining cutting pattemns,
possible minimum cost routes, a set of tasks around calendar dates can be only
specified in a procedural form. Although modelling systems are well set out to
structure the model components, by their very nature these modelling systems lack




129

the procedural constructs.  As a result activity based LP models which are
constructed by a column generation strategy across a fixed structure of rows, cannot
be developed within these systems.

We have introduced extensions to an established LP modelling system namely MPL
whereby the procedural knowledge is introduced through a dynamic binding of the
high level modelling language. We also introduce object orientation thus taking
advantage of encapsulation, inheritance, and information hiding. In this way we can
capture procedural knowledge in the form of methods within self contained objects.
The extension is illustrated by an example of an optimum cutter scheduling problem
studied by the authors.

ACTIVITY BASED LP/IP MODELS

As explained in the introduction many practical models are such that the underlying
LP can only be constructed if the activities specifying the technology matrix, that is,
the columns, are computed using the domain knowledge of the application. We
consider a few examples.

Crew Scheduling: Both air crew (Johnson (1990)) and bus crew scheduling (Darby-
Dowman and Mitra, 1985) problems are by nature, set partitioning or set covering
problems or their extensions. The rows represent legs of flight or pieces of work
which must be covered by the crew. The columns represent ways of carrying out
a work shift that is legal within union regulations and accepted practises.

VLSI Routing: VLSI routing (Pulleyblank,1992) is a well known combinatorial
problem which has the structure of a set problem in which columns are generated
after solving a travelling salesman problem.

Cutting Stock Problem: One and two dimensional cutting stock problems
(Gomory, 1965) have many industrial applications in the area of minimum wastage of
sheet material. Here again the columns are constructed by a combinatorial procedure
for fitting patterns within a two dimensional master area. Alternatively by solving
a knapsack problem using dynamic programming recursion efficient patterns and
corresponding columns can be generated.

Cutter Scheduling Problem: We have developed a model (Darby-Dowman,1992)
which uses integer goal programming in respect of a set problem with some additional
choice constraints. The problem is set out in the next section.

2. STATEMENT OF THE CUTTER SCHEDULING PROBLEM
The problem involves creating an annual schedule for nc number of cutters to carry

out tasks such as Patrol, Maintenance, training whereby the schedule specifies the
activity of each cutter for each day of the year.
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Define the parameters
nc = number of cutters to be scheduled,

n, = number of columns (possible schedules) for cutter k,
nt = number of time periods in the scheduling year,

ng = number of constraint groups (schedule ’'requirements’),

The corresponding index sets

i: i = 1,2,...,ng; schedule requirements,

t: t = 1,2,...,nt; time period,

k: k = 1,2,...,nc; cutter identifier

L t = 1,2,...,n,; identifier of possible schedule for cutter k,

Model Variables
x,e = 1 if the £® possible schedule for cutter k is selected O otherwise,

u.: extent of the under-achievement in respect of schedule requirement i in time
period t,

o,. extent of the over-achievement in respect of schedule requirement i in time
period t,

Model CoefTicients
as, = 1 if the £® possible cutter schedule for cutter k contributes to schedule
requirement i in time period t, 0 otherwise,

r,: target/limit/threshold for schedule requirement i in time period t in terms of
number of cutters contributing to the schedule requirement,

w(20): penalty for each unit of under-achievement in respect of r,,
w*,(=0): penalty for each unit of over-achievement in respect of r,

The model is stated as,

ng nt
Min 3 Y (woup, + wi0y4)
{i=1 te)
subjectto
pe o i=1,2 ng
Y Xk tUpe ~O0p"Tieea=1'2" 0 'nt
=1 5
Ny
Y x,=1 k=1,2,...,nc
=

k=1,2,...,nc
1

Xy =0o0r1 =1,2,...,0,
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3. COLUMN GENERATION PSEUDO CODE

l  ATTRIBUTE

£ o
a_cut_schedule (Cutter,Class,Port, Tasks, Time)
: do for all cutters.
Analyse DATES
: do for task group one

*/maintenance and training tasks/*
: go to task order (j),{j = 1,2,3}

task order (1) : allocate maintenance to this cutter group
go to loop end

task order (2) : allocate reftraining to this cutter group
go to loop end

task order (3) : allocate training availability to this cutter group
go to loop end

loopend : endo

: do for allowable patrol tasks

*/patrol tasks/*

patrol order (1) : allocate patrol
go to patrol end

patrol order (4) : allocate patrol

patrol end : endo

cutters end : endo

4. EXTENDED MPL SYNTAX

MPL is a modelling language for specifying linear programming problems. As in
any other algebraic LP modelling language the model can be specified by
progressively introducing a series of keywords which divide the model components
across sections. The syntax and structure of MPL is set out below in a summary
form, (Maximal, 1991)
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The Definition Part

TITLE - Names the problem
INDEX - The dimension of the problem
DATA = Scalars, datavectors and datafiles
DECISION - Define vector variables
MACRO - Reusable macros for expressions

The Model Part

MODEL - Description of the problem
MAX or MIN - The objective function
SUBJECT TO - The constraints
BOUNDS - Simple upper and lower bounds
FREE - Free variables
INTEGER - Integer variables
BINARY - Binary (0/1) variables

END

TYPICAL LINEAR FORM SYNTAX
SUM (<index> : <table ref> * <decision variable>)
<relation> < table ref>

SCHEDULING MODEL SPECIFIED IN EXTENDED MPL

TITLE
csap_schedule
INDEX
nmbcutters = 1..30;
#DYNAMIC npos (nmbcutters)
notimeperiod = 1..53;
notasks = 1..9;
patrol = (D1,D3,D5,D7);
maintenance = (drydock, dockside);
DATA
tasklimits[patrol] : = DATAFILE (tlimpat.dbs);
[ ]
[ ]
[ ]
oversatcost[notasks,notimeperiod]: = DATAFILE(ostcost.dbs);
undersatcost(notasks,notimeperiod]: = DATAFILE(ustcost.dbs);
coverreqmt[notasks,notimeperiod]: = DATAFILE(cover.dbs)

DECISION VARIABLES
oversat[notasks,notimeperiod];

undersat[notasks,notimeperiod]
#DYNAMIC xschedule[npos(nmbcutters)];
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MODEL
MIN deviation = SUM(notasks,notimeperiod: oversat*oversatcost +
undersat*undersatcost);

SUBJECT TO _
COVER([notasks,notimeperiod]:
SUM(nmbcutter,npos:a_cut_schedule*xschedule)

+ undersat - oversat = coverreqmt;

CHOOSE 1[nmbcutters]): SUM(npos:xschedule) = 1;

BINARY
xschedule;

END
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1 Introduction

Given a machine which can process at most one task at time, and a set T' = {T},...,T,}
of n tasks with associated processing times p,,...,pn, deadlines d,...,d,, flow time
penalties ai,...,an, and earliness penalties 3,...,Ba, the Single Machine Scheduling
Problem with Earliness and Flow Time Penalties (SMEF) is to determine a processing
sequence for the tasks that minimizes the total cost incurred by the penalties, while
preserving deadline requirements of each task. The processing cost associated with each
task T is equal to its completion time C; multiplied by the flow time penalty, plus
its earliness E; = d; — C, multiplied by the earliness penalty. Using the three-field
classification introduced in Graham, Lawler, Lenstra and Rinnooy Kan (7], the problem
is denoted as 1|d;| 3(a;C; + B;E;).

We assume that processing times, deadlines and penalties are positive integers, that
tasks are available at time zero, that setup times, if any, are identical and included in the
processing time and that preemption of tasks is not allowed. A schedule (i.e. a solution
for problem SMEF) is defined through the vector (C;,C3,...,Cn) of the completion
time of the tasks: task T} is processed in time interval (C; — pj, C;]

The flow time penalty has classically been used to model overhead and capital car-
tying costs sustained during production, while the earliness penalty takes into account
the cost incurred for storing a finished product until it is shipped.

The problem is strongly NP-hard, since it is a generalization of the single machine
scheduling problem calling for the minimum weighted flow time sequence with no tardy
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task (1}d;| 3 «;C;) which is known to be NP-hard in the strong sense (see Lenstra,
Rinnooy Kan and Brucker (8]). An exact algorithm for SMEF, based on a dynamic
programming approach, has been developed by Bard, Venkatraman and Feo [2]. Feo,
Venkatraman and Bard [4] have recently presented a heuristic algorithm based on a
Greedy Randomized Adaptive Searth Procedure (GRASP). Special cases and related
problems have also been studied by Fry and Leong [6], Bagchi and Ahmadi 1), Faaland
and Schmitt {5], and Sen, Raizadeh and Dileepan {10].

In the following sections we develop lower bounds and an approximation algorithm for
SMEF and show, through computational experiments, the effectiveness of the proposed
approaches. In Section 2 we present some simple lower bounds and a better one based on
a preemptive relaxation of the problem. In Section 3 we use the preemptive lower bound
to obtain an approximation algorithm. The approximation algorithm is experimentally
analyzed in Section 4.

Unless otherwise specified, we will always assume that the tasks are numbered so
that:

d <dy <...<d,. (1)

2 Lower bounds

The objective function of SMEF can be written as:

min Y _(a;C; + Bi(d; — C;) = Y B;d; + min ichj =

=1 =1 j=1

:(SMEF)

S Bid; + 2(SMEF'); 2)

i=1

where w; = a; — 3, is the overall penalty of task T;.

2.1 A simple bound

We can partition T into TR = {T;€T:wj <0} and TL = {T; € T : w; > 0}. These
two subsets contain tasks that have different behaviour in an optimal schedule: the tasks
of set TR require to be processed as late as possible, while those of set T'L must be
scheduled as soon as possible.

Let Pr (resp. P_) denote the sub-instance of SM EF’ in which only the tasks in TR
(resp. TL) are considered, and let z(Pg) (resp. z(P)) denote the corresponding solution
value. We will consider the relaxation of SMEF' obtained by assuming that a task in
TR can be processed in parallel with a task in T'L: the optimal solution to this problem is
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clearly provided by the separate solutions to Pg and Pr,s0 L = ¥}, Bjd;j+2(Pr)+2(PL)
is a lower bound on z(SMEF).

Since any instance of 1|rj|3. w;C;, which is known to be strongly NP-hard (see
Lenstra, Rinnooy Kan and Brucker {8]), can be easily transf.rmed into an equivalent
instance of Pr, we know that this problem too is strongly NP-hard. Problem P, is the
already mentioned 1{d;| 3" w;C;, which is also known to be NP-hard in the strong sense.
Hence above lower bound L cannot be computed in polynomial time, but we can deter-
mine lower bounds L(Pgr) and L(P.) for the two subproblems, obtaining lower bound
L = %5, Bid; + L(Pr) + L(PL).

A lower bound for problem Pg can be obtained by allowing that more than one task
of TR can be processed at a time. The optimal solution is clearly obtained in O(n) time
by scheduling each task as late as possible, i.e. setting C; = d; for each Tj € TR, and
its value is:

Lo(PR) = Tz;nwidj- (3)

A lower bound for problem P, can be computed by relaxing the deadline con-
straints, obtaining the problem 1|| Y w,;C; which can be exactly solved (see Smith {11])
in O(nlogn) time by scheduling the tasks in order of decreasing value of the ratio w;/p;:
let Lo(P.) denote the solution value. Then

Lo = 3" B;d; + Lo(Pr) + Lo(Py), (4)

J=1
is a valid lower bound for SMEF.
The time complexity for the computation of Ly is clearly O(nlogn).

2.2 A new lower bound

Let us consider the following new problem, called S(SM EF"’) in the sequel, derived from
SMEF' by allowing that each task T can be split into k(j) pieces Tj,,..., Tj,,, with
deadlines d;; = d; for each i and j, positive processing times p;,,..., pj,;, such that
}:ﬁ’? s = p; for each j, and weights wj,, ..., w;, ,, having the same sign as w; and such
that TH0) w;;, = wj for each ;.

Let C;; be the completion time of piece Tj;: the objective function of S(SMEF’) is

Z Wy st' (5)

Posner (9] proves (for the case w; > 0, but the proof holds also for unrestricted w;)

that, given a feasible solution to SMEF', of value z, the corresponding solution for
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S(SMEF') (obtained by consecutively scheduling Tj,,..., Tj,,, in time interval (C; —
Pi»C;]) has value Z such that z = 2+ CBRK where

n k(j) k(s)

CBRK =3 3 wi; 3 Pin- (6)

=izl h=iel
Let 2= be the optimal solution value of S(SMEF’), then z* < Z, hence

L1=Zﬂjdj +Z_'—+CBRK (7)
J=1
is a valid lower bound on the value of z2(SMEF).
Given a feasible task splitting, we can partition the set of pieces of S{SMEF'} into
Tt = {Tj, : w; >0} and T~ = {Tj, : w;; < 0}. Let n* and n~ be the cardinalities of

these two subsets, were obviously we haven™ +n~ =3

Lay=

L k(7). Let us also recame the

pieces in such a way that
T+ = (T}, T, THY, T~ = {T7\T5,..., T2}
with d¥, d7, pT, p7, w!, w; renamed accordingly) and that
52 @2 Pj s P Wy W
df <dt,,; d; <d,. (8)

Definition 1 Given set T'~, a block is a set B, = (T, T, .., ..., Ty, } of consecutive
pieces (ordered according to (8)), whose total processing time is not grater than the time
interval between the deadline of T, _,, and the deadline of T, . Let s; = dy, — 2’;":". Pic
the associated block interval s BI; = (s;,ds,].

Let us define

nt
r=min{t: > pf + > p; < s, for each i :dy, > t}, (9)
J=i R

and note that 7 must be the completion time of a piece beionging to T'*. Then we can
divide problem S(SMEF') in two subproblems:

Pa: S(SMEF') for the piecesin Ty = T* U{T; : d] <7},
Pg: S(SMEF') for the pieces in Tg = {T} : dj > 7},

and observe that Yrep, pj = 7.
Without loss of generality, let us assume from now that p,, = 1 for each j;.

Theorem 1 The separate optimal solutions to P, and Pg do not overlap and produce
the optimal solution to S(SMEF').
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Proof: the pieces in T4 must obviously be scheduled before r. Observe that in any
optimal solution to S(SMEF') the pieces in Tp must be scheduled after 7. Assume
indeed that a unary piece T;” € Tp is scheduled before 7: by definition of 7, a piece
Tt € T, must be scheduled after T, so interchanging the two units the solution would
improve. Hence the thesis, since scheduling any piece of T+ after T would leave a useless
idle time before r. O

Problem Pg it is equivalent to 1|rj| 3 v;C;, with tasks allowed to be splitted as
described above, and v; = —wj, r; = max,{dx} — d;. This problem is exactly solved by
the algorithm proposed by Belouadah, Posner and Potts [3].

Theorem 2 In the optimal solution to P4 any unit T, € T4 is scheduled in the block

interval associated with the block containing T, .

Froof: we prove the theorem by absurd. Let B, be the rightmost block not containing
a unit T~ belonging to the block, and observe that such 7~ must be scheduled at a time
instant preceding BI;. Since in any optimal solution, no idle time can exist between 0
and 7, B; must contain at least one unit of T+ (indeed no unit of T~ could come from
a block on its right, by definition of B;, nor from a block on its left, since this would
violate the deadline): let T+ denote the rightmost such unit, scheduled at £ € BI;. Find
the rightmost unit T-, scheduled at a time instant preceding £, which can be scheduled
in £ (note that such unit must exist, since, by definition, a block interval can be filled
by units of T~ with no idle time). Interchanging T+ and T-, we would improve the
solution, a contradiction. Further observe that, if T- % T-, the process can be iterated
until T~ is moved to BI;. O

Corollary 1 Problem P, decomposes into: (i) the problem P; of optimally scheduling
the pieces beionging to T~ of each block of P, in the associated block interval; and (ii) the
problem P} of optimally scheduling the pieces belonging to T* in intervals (0,7)\U,{BI, :

dy, < 7.

Problem P, can be optimally solved applying the algorithm of Belouadah, Posner
and Potts (3] to the tasks T; € T R such that the corresponding pieces are in T4. Problem
P} can be optimally solved applying the Posner algorithm to an instance defined by the
iasks T; € Ty, plus a number of dummy tasks f‘,»‘, one for each block B; with dy, < 7,
having deadlines d,,, processing times (dy; — s;) and weights —e (with ¢ > 0). Observe
that such algorithm would schedule each dummy task exactly at s; without splitting it.

Hence, in order to compute lower bound L,, we should derive from the original
problem the three problems P}, P; and Pg, and separately solve them. However, we
can obtain a unique O(nlogn) algorithm that determines and solves these problems at
a time, by modifying the Posner algorithm. The Posner algorithm for 1|d;| = w;C; with
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task splitting starts with a time instant t = 37_, p;, and schedules, by decreasing time
instants, tasks or pieces in [0,¢]. This algorithm, which works also for negative weights,
can directly solve both P} and P; if applied to P4 with starting time ¢ = 7. To solve Pp,
it is sufficient to observe that the algorithm proposed by Belouadah, Posner and Potts
for the problem obtained from Pp by replacing v; with —w; and r; with max,{d;} — d;,
is equivalent to iteratively apply the Posner algorithm to the tasks of each block BI;,
starting from the rightmost one. When a block is completely scheduled, if the sum of
the processing times of the unscheduled tasks is greater than the ending time of the next
block, then this is the first block of P4, and problem Pg is optimally solved.

3 Approximation algorithm

In this section we introduce an approximation algorithm for SMEF based on lower
bound L,. The algorithm determines a feasible schedule for problems SMEF, start-
ing from the optimal solutions of problem S(SMEF’'). Given the optimal solution
to S(SMEF'), and observing that this can be infeasible for SMEF only because of
the splitted tasks, we can easily obtain a feasible sequence as follows. We start with
t = max;{ds;} and proceed by decreasing completion times until we encounter a piece
T;, obtained by splitting a task (or a piece) Tj into T;, and Tj,, with processing times
?;. and p;,, respectively, scheduled at time instants t = £, and ¢y, with ¢, > ¢, + p;,. We
can eliminate this infeasibility in three possible ways;

a) scheduling T}, at time instant t, — p; and shifting left, of p;, time units, all the
tasks currently scheduled between Tj,, and Tj,;

b) scheduling T}, at time instant ¢, —p;, and shifting left the necessary tasks preceding
T}, until an idle time interval of length at least p;, is created, if the corresponding

schedule is feasible;

c) scheduling T}, at time instant ¢, + pj, and shifting right the tasks between T}, and
T;,, of pj, time units, if the corresponding schedule is feasible.

Whenever a piece is encountered, the algorithm evaluates all these alternatives and
selects the one producing the minimum objective function increase.

The final approximate solution to SM EF is then obtained by optimally inserting idle
times. This can be done through the O(n) procedure described in Bard, Venkatraman
and Feo [2].
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4 Computational Results

We have coded in C language the lower bound L, described in Section 2, the GRASP
heuristic described in Feo, Venkatraman and Bard [4] and the approximation algorithm
of Section 3. -

We executed computational experiments on a PC 486 with a 33 MHz clock, by
considering problems as those described in Feo, Venkatraman and Bard {4].

For each task T; the associated values of p; are uniformly random in range [1,10].

For each value of n, (n = 10, 15,20, 25, 30), three classes of random test problems are
defined:

I) a; < B; for approximately 50% of the tasks;
I1) a, < B; for approximately 66% of the tasks;

) a; < B; for approximately 33% of the tasks;

where both a;,3; € [1,10].

The deadline of each task T} is uniformly random in range [8~ 7, pj, 8% T}, psls
with the following (8-, 4%) pairs: (0.75, 1,75), (0.25, 1.75), (0.75, 1.75), (0.50, 2.50),
(0.25, 1.25), (0, 1.25), and (0, 1).

For each class, for each value of n and for each pair (§~,5*) ten feasible problem
were generated, giving a total of 350 instances.

The computational experiments have proved that the algorithm of Section 3 produces
solutions better than those produced by GRASP, with running times which are up to
two orders of magnitude smaller.
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Combining Genetic and Local Search for Solving the Job Shop
Scheduling Problem

Ulricl;Dorndori‘ Erwin Pesch?

Abstract

This paper describes a genetic algorithm that uses a local search based improvement
operator for solving the job shop scheduling problem. The genetic algorithm serves as
a meta-heuristic that guides a procedure for building starting solutions which are then
improved by local search. Initial computational resuits are encouraging: The algorithm
nas solved the famous 10 x 10 problem instance formulated by Fisher and Thompson
in 1963 which has defied solution for over 20 years.

1 Introduction

The minimum makespan problem of job shop scheduling {(JSP) is a classical combinatorial opti-
mization problem that has received considerable attention in the operations research literature; in
the recent years, exact algorithms [6, 3, 5] and tailored approximation methods [2} for the JSP have
been significantly progressed. It is well known that the JSP is NP-hard [23] and belongs to the
most intractable problems considered. The problem is thus a good test for evaluating the power
of generally applicable approximation techniques (1]. The algorithm described here combines two
such techniques, genetic and local search. The idea of using problem specific information in form of
locai search within the {framework of a genetic algorithm has been suggested before in a number of
publications, see for instance [18, 26, 15, 27, 1, 21, 33, 9]. This paper focusses on the combination
of relatively simple building blocks rather than on fine-tuning the inidividual parts; for instance,
more intricate local search neighbourhood structures than the one employed here are known (22, 8).

The remainder of this paper is organised as follows. After a short introduction to the JSP
in the next section, section 3 presents a simple variable depth search improvement heuristic; we
assume tihat the reader is familiar with the concepts of local search. Section 4 describes the
genetic framework in which this procedure operates. We conclude with a description of initial
computational results.

2 The Job Shop Scheduling Problem

A job shop consists of a set M of m different machines that perform operations on a set J of
jobs. Each job has a specified processing order through the machines, i.e. it is an ordered list
of operations from set VV = {1,...,n}. An operation is characterized by the machine it requires
and by its processing time. Operations cannot be interrupted (non-preemption), each machine can
handle only one job at a time, and each job can only be performed on one machine at a time.
The problem is to find operation sequences on the machines which minimize the makespan, the
maximum of the completion times of all operations.
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An illuminating description of the problem is the disjunctive graph model introduced by Roy
and Sussman [31]. In the edge-weighted graph, there is a vertex for every operation ¢ € V' and two
dummy vertices (0 and n+ 1 representing the start and end of a schedule. For every two consecutive
operations of the same job there is a directed arc from the arc set A between the correspording
vertices; the start and end vertices 0 and n + 1 are considered to be the first and last operatior,
respectively, of every job. -

For each machine k& € M the edge set E; contains all pairs {1, j} of operations tc be performed
on k. Because these operations cannot overlap, an orientation of the disjunctive edges in E, must
be chosen: an operation § either has to be performed before j (choose the orientation (i, j)) or after
7 (choose (4,1)). A solution to the JSP (a scheduie) can be seen as an crientation of all disjunctive
edges in E = {E,,..., Em} such that the resulting Graph G(V, 4, E) is wcyciic, i.e. there are no
precedence conflicts between operations.

Each arc or oriented disjunctive edge (1, j) in G is labeled with a weight ccrresponding to the
processing time of the operation (vertex) ¢ from which the arc/edge starts. The earliest starting
time t; of an operation 1 in a schedule is equal to the length of the maximum weight or longest
path in G from the start node 0 to vertex 1; the makespan of the schedule is eaual to the length cf
the maximimum weight or critical path from start node 0 to end node n + 1

3 A Local Search Procedure for the JSP

Most neighbourhood structures that have been employed in local search algerithms for the JSP can
be considered to be based on an idea used in one of the first exact solution mett:oas for the problem
due to Balas {4]. His implicit enumeration algorithm makes use of the fact that in every schedule
with a makespan shorter than the one of the current schedule, at least one of the disjunctive edges
on the critical path of the current solution graph must be reversed. Reversing an edge on the
critical path of a directed graph always yields an acyclic graph [4]. in other words a new feasibie
solution without precedence conflicts between operations. These observations siggest the following
neighbourhood structure:

The neighbourhood N(z) of a solution r characterized by tae solution graph G, is the

set of solutions y with a solution graph G, that can be obtained from: &z by reversing

the orientation of a disjunctive edge (1, j) on the critical path of G, 1.e. by repiacing

(i, 7) with (5,1).
Reversing the edge (i, j) means changing the order in which i and j are processed on a machine.
This neighbourhood is connective {4, 22): It is possible to transform an arbitrary solution into
every other solution, including the optimal one, by going through a sequence of moves in the
neighbourhood, in other words by iteratively replacing a current solution z with one of its neigh-
bours y € N(z).

In order to use the neighbourhood in a local search aigorithm, a gain tnust be associated with
every move. The gain g(1, j) from reversing an edge (¢, j) can be estimated baseu on considerations
about the minimal length of the critical path of the resulting graph (finding the exact ga'n of z
move would generally involve a longest path calculation). The gain of a move can be negative,
thus leading to a deterioration of the objective function. For details, we refer to (4].

The simple neighbourhood structure described above has been extended by Matsuo «t al. {25
and Dell’Amico and Trubian [8], see also {32, 1, 22].

In the remainder of this section, we present a local search procedure that uses the neighbourhood
defined above. The algorithm is based on a technique described by Kernighan and Lin 20, 24],
which has later been named ‘variable depth search’ by Papadimittiou and Steiglitz {29]. The
method can be seen as a special case of a more general approach introduced by Glover {14]. The
basic idea is similar to the one used in tabu search [12, 13], the main difference being that the list
of forbidden (tabu) moves grows dynamically during a variable depth search iteration and is reset
at the beginning of the next iteration.




144

Figure 1: A variable depth search algorithm

start with an initial solution z°;

repeat
T:=6 {T is the tabu list}
d:=0 {d is the current.search depth}
do
d:=d+1,

find the best move, i.e. the disjunctive edge (i*,j*) for which g(i*,;*) =
max {g(i, j)|({,j) € E — T}; {note that g(i*, *) can be negative}

make this move, i.e. reverse the edge (i°, j*), thus obtaining the solution z4 at
search depth d;

T:=T+{(*. "))
while [T} # | Z|;
let d° denote the search depth at which the best solution z4. with f(za) =
min {f z4)|0 < d < ;E|} has been found;

f d* > 0 then
T = &4
until d* = 0;

The zlgorithm is outlined in figure 1; f(z) is the objective function. Beginning with a starting
solution x‘f’”, the procedure iooks ahead for a certain number of moves and then sets the starting
solution z**" for *he next itzration to the best solution found in the look-ahead phase at depth d°.
Thess steps are repeaied as long as an improvement is possible. When the maximal look-ahead
depth where the length [T of the tabu list equals the cardinality |E| of the edge set is reached,
every disjunctive edge has been reversed once. The step leading from a starting solution = in
iteration k to ihe starting solution 2*™*" in the next iteration consists of a varying number d* of
moves in the neighbourhood, hence the name variable depth search. At the inner level of the ‘do
while’ loop, the algorithm can escape local optima by allowing moves with negative gain. Cycling
is avoided via the dynamicaliy growing tabu list T. At the outer level of the ‘repeat until’ loop,
the procedure stops as soon as an iteration without improvement occurs.

As an extension of the algorithm, the outer level (‘repeat until’) could be embedded in yet
another control loop (not shown here) and use a search strategy similar to the inner level, thus
icading to a multi-level search algorithm [14].

4 A Genetic Algorithm for the JSP

Genetic algorithms (GAs) are general search strategies and optimization methods motivated by
the theory of evolution; they date back to the early work of Holland [19] and Rechenberg [30], see
aiso [16). Simply speaking, a GA aims at producing near-optimal solutions by letting a set (popu-
lation) of random solutions (individuals) undergo a sequence of unary and binary transformations
governed by a selection scheme biased towards high-quality solutions. The solutions manipulated
by a GA are usually represented as binary strings, e.g. a binary number or a vector of such numbers.
The transformations are applied to the population by three simple operators: selection, mutation,
and crossover. The effect of the operators is that implicitely good properties are identified and
combined into new individuals of a new population which hopefully has the property that the
best solution and the average value of the solutions are better than in previous populations. This
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Figure 2: A genetic algorithm

t:=0; {t is the generation counter}
initialize P(t); {P(t) is the population in generation t}
evaluate P(t);
while the stopping criteria are not satisfied do
begin )
t:=t+1;
select P(t) from P(t — 1);
recombine P(t);
evaluate P(t);
end;

process is repeated until some stopping criteria are met. Figure 2 shows the outline of a GA.

In the selection step, a copy of an old individual is produced with a probability proportional io
its fitness value, i.e. better strings probably get more copies. Selection can be realized in a number
of ways; one could adopt the scenario of Goldberg [16] or use deterministic ranking. Besides,
it matters whether the newly recombined offspring compete with the parent solutions or simply
replace them. Recombination consists of crossover and mutation. In order to apply the crossover
operator, the population is randomly partitioned into pairs. Next, for each pair, crossover is applied
with a certain probability by randomly choosing a position in the string and exchanging the tails
(defined as the substring starting at the chosen position) of the two strings. The mutation operator
which makes random changes to single elements of a string only piays a secondary role; its main
purpose is to maintain diversity in the population.

Compared to standard heuristics, for instance for the traveling salesman problem “genetic algo-
rithms are not well suited for fine-tuning structures which are very close to optimal solutions” (18].
However, it is often easy to extend a GA to incorportate (local search) improvement operators
in the evaluation step. The resulting algorithm has been called genetic local search heuristic; in
case of the traveling salesman problem we refer to the papers of Ulder et al. {33] and Kolen and
Pesch [21].

In order to apply a GA to an optimization problem, solutions must be encoded in a format that
can be manipulated by the GA. The traditional GA based on a binary string representation of a
solution is often unsuitable for combinatorial optimization problems because it is very difficult to
represent a solution in such a way that the substrings have a meaningful interpretation. Choosing
a more natural representation, however, involves more intricate recombination operators to ensure
that the offspring is feasible; for an example see the crossover operators developed for the JSP by
Aarts et al. [1) and Nakano and Yamada [28].

The underlying idea of the GA described in this paper is to use the genetic information to guide
a heuristic which finds a starting solution for the JSP. The GA thus serves as a meta-heuristic which
produces a sequence of decision rules that direct another algorithm. The output of this algorithm
can then be improved by a local search procedure, and the improved solution is finally inserted
into the GA population again. Using the strings of a GA to guide a scheduling heuristic has first
been suggested by Davis (7). Applications of a GA to the JSP have been described in [28, 9, 34].

Before we take a closer look at the GA itself, let us briefly introduce the algorithm of Giffler and
Thompson {11}, which can be considered as a common basis of all priority rule based heuristics
for the JSP. The procedure can generate all active and hence also all optimal schedules. The
algorithm, which is outlined in figure 3, iteratively assigns operations from the set Q of unscheduled
operations to machines. In the description in figure 3, r; and ¢; denote the earliest possible start
and completion time, respectively, of operation i.

In the first step of each iteration, the machine on which the next operation has to be scheduled
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Figure 3: The algorithm of Giffler and Thompson
Q:={1,....,.N};

repeat
among all unscheduled operations in @ let j* be the one with smallest com-
pletion time, i.e. ¢jo = min {j € Q}; let m* denote the machine j* has to be
processed on;

randomly choose an operation i from the conflict set C = {j €
Q|; has to be processed on machine m* and r; < ¢;-};

Q := Q — {i}; modify r; and ¢; for all operations j € Q;
until Q = ¢;

is chosen in such a way, that only active schedules wiil be generated (see {11]). In the second step.
conflicts, i.e. operations competing for the same machine, are resolved randomly. In priority rule
based heuristics, an operation from the conflict set C is selected according to a priority rule rather
than randomly, for instance “choose the operation with the smallest processing time”.

Using the Giffler/Thompson algorithm within the framework of a GA is straightforward. The
random choice of an operation from the conflict set can be replaced with a choice based on a
decision rule, where either the rule itself or the information used within the rule is supplied by a
GA. For example, as described in [9], a GA can manipulate strings of priority rules that are then
evaluated by using them in the iterations of the Giffler/Thompson algorithm.

Here, we let the GA manipulate the information to be used in a decision rule. An individual
member of the population corresponds to a job shop schedule; it is a string of n entries, where
n is the number of operations in the problem instance. An entry i represents the starting time
t; of operation i in the schedule. Because the vector of starting times can easily be stored in the
traditional form of a binary string, the standard crossover and mutation operators can be applied.
A newly recombined string is evaluated by using it as input for guiding the Giffler/Thompson
algorithm. Instead of randomly picking an operation from the conflict set C, the choice is based
on the string information that is used in the following ‘earliest starting time’ rule:

Choose the operation 1* in the conflict set C for which t;- = min {t;}i € C}.

Yamada and Nakano [34] have independently described a crossover operator that is based on the
same genetic string representation. During crossover, the schedules of the individuals to be crossed
are used to guide the Giffler/Thompson algorithm; the random choice of an operation from the
conflict set is replaced by the following decision sequence:

1. Apply mutation with a small probability by randomly choosing an operation from the conflict
set.

2. If there was no mutation then randomly (with equal probability) select one of the two parents
to be crossed and choose the operation i* in the conflict set C for which t;c = min {t;|i € C},
where t; denotes the starting time of operation i in the selected parent’s schedule.

5 Computational Results

The GA with local variable depth search has been implemented in C and tested on a Sun SPARC-
station IPX. We have used Grefenstette’s general purpose genetic search system GENESIS [17] for
the GA part of our algorithm. Limited initial tests have been performed using the three famous
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problem instances introduced by Fisher and Thompson in 1963 [10] which have since then served
as a test for almost every algorithm for the JSP. We have tested both the standard crossover
where the resulting individual string serves for guiding the Giffler/Thompson algorithm and the
Giffler/Thompson crossover of Yamada and Nakano; both versions of the algorithm have given
similar results. The algorithm has been run five times on each problem instance, and all instances
have been solved to optimality within a GPU time of ten minutes for a single run. While the 6 x 6
problem and the 5 x 20 problem are relatively easy, it is quite remarkable that the algorithm has
always solved the notoriously difficult 10 x 10 instance.

In our tests, we have used the following GA parameters: a crossover rate of 0.8, no mutation, a
generation gap of 1 and a window size of 5 (see [17]), an elitist strategy, where the best individual
of a generation always survives reproduction, and an improvement probability of 0.2, meaning that
on average 20% of the newly recombined individuals are improved by the local search procedure;
this parameter has been selected after a few experiments and it seems possible that it can be
improved. It is likely that the look-ahead depth |E|, the cardinality of the edge set, used in the
variable depth search could be optimized; in our experiments, the optimal depth d* has usually
been reached after reversing only a small fraction of the total number of disjuncive edges. Since
the control parameters have not been fine-tuned, we suspect that the efficiency of our algorithm
could still be increased by the ‘tender loving care factor'.

Because our intial tests have been limited to a small number of experiments with only three
problem instances, the results are not yet very conclusive, so great care needs to be taken when
comparing them to the results obtained by applying other generally applicable approximation
techniques to the JSP as described in [25, 32, 22, 1. 8, 28, 34]. We would just like to remark
that the results and running times indicate that our algorithm is at least competitive. When
compared to modern exact methods and tailored approximation methods for the JSP {2, 6, 3, 5],
the running times of the algorithm seem relatively high. However, these methods are substantially
more involved than the algorithm described here, and extending them to modified versions of the
problem is not easy.

6 Conclusions

We have presented a genetic algorithm that guides the Giffler/Thompson heuristic for building
active schedules which are then improved by a variable depth search procedure. The algorithm
which is comprised of quite simple building blocks has solved the notoriously difficult 10 x 10
problem instance of Fisher and Thompson to optimality.

The work described in this paper will be extended in several directions. Firstly, more conclusive
computational results will be produced by applying the algorithm to a larger suite of standard test
problems and by comparing its results to those obtained by applying the individual components
separately. Secondly, more sophisticated search neighbourhood structures as described in [8] might
be used, and thirdly, the variable depth search technique could be replaced with tabu search as
described in [12, 13, 8] for comparing the two methods.
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1. Introduction.

Nonlinear Programming (NLP) algorithms can be classified
into algorithms that generate a sequence of feasible points and
algorithms where the intermediate points in general are infea-
sible. The first class, called feasible path methods, can often
be made very reliable because they work with feasible voints.
However, thev require a method for generating an initial feasible

point.

This paper describes a new algorithm for finding an initial
feasible point :in connection with the Generalized Reduced Gra-
dient (GRG) algorithm (Abadie and Carpentier, 1969), and in
particular in the large sparse GRG algorithm CONOPT, (Drud, 1985
and 1992). The algorithm is based on ideas from Crash procedures
in Linear Programming (LP) with adjustments that take into
accourit the special features of nonlinear models.

The paper is organized as follows: Section 2 defines our
problem and assumptions. Section 3 summarizes traditional methods
used for finding an initial feasible solution in GRG algorithms.
Section 4 describes the proposed crash procedure. Section 5
contains scome limited computational experience, and section 6
concludes the paper.

2. Assumptions.

We consider nonlinear programs of the following general
form:

nin £(x) (1)
subject to

g(x) =b (2)
and

l <x<u (3)

where x is the n-vector of decision variables, g is the m~vector
of constraint functions, f is the objective function, b is the
m-vector of right hand sides, and 1 and u are n-vectors of lower
and upper bounds. Some of the bound values may be minus or plus
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infinity. We assume that f and g are defined and have continuous
derivatives for all values of x satisfying the bounds (3).

We assume that there are hundreds or thousands cf equations
and variables, and that the Jacobian is sparse. In addition, we
assume that the individual nonlinear functions and their deriva-
tives can be computed independently. This is a reasonable assump-
tion when the model is communicated to the solution aigorithm by
a modeling system such as the General Algebraic Modeling Systen,
GAMS (Brooke et.al., 1988), currently the most widely used input
generator for CONOPT.

3. The GRG Algorithm and its Phase-1 Procedure.

When the GRG algorithm is described the proklem of finding
an initial feasible solution is usually igncred.

Traditionally, the problem orf £findinoc ~n :.aicial ieasibie
solution has been attacked similar to the wav it .s dcne in Fhase
1 in LP: Artificial variabizss with suitable sounds sre added to
the infeasible equations to yield a vzlaxed tut icasidie acdel.
The sum of the artificials is then iinimiced, sukiect <*he
equations of the relaxed model. The sclution =o <this ~hase-1
model is either a point in which all artificial variables are
zero, i.e. a feasible solution toc the =trigina:i oreoblem, aor a
strictly positive local minimum of the sum cf infeasikilities in
which case the model is considered locaiiy) infeasibie.

The computational cost of this cthase~' procedure wiil depend
on the number of artificial variables .n “he inltial point. i.e.
on the number of infeasible equations, ind on the sice of the
infeasibilities. The procedure may be relatively 510w on models
with many small infeasibilities <ecause the remcval of each
artificial, independent on its initial size, requires at least
one iteration. We have therefore implemented aa initial Faase-1
heuristic in CONOPT to get around this problem. ~“he heuristic
is summarized in Fig. 1.

1. Select a set of basic variables favoring variables
away from bounds.
2. Perform a Newton step using these basic variables
a Use steplength < 1 if a basic variable ortherwise
would exceed a bound
b Change the basis of the critical basic variapnle
is at bound
c¢ If the iterations do not converge due tc nzn-
linearities then
- Change the basis or
- Remove "bhad" equations from the Newton process
3. When the "good" equations are feasible, add artifi-
cials to the '"bad" equations and minimize t:e sum
of artificials using the standard GRG procedure.

Figure 1: The Phase-1 heuristic in CONOPT.
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¥When uany variables have good initial values the heuristic
will b2 ahl~ ¢ sealect a good basis with many variables away from
their lcunac, and a feasible solution can be found very quickly,
essenciailiy with the speed of a Newton procedure.

¥licwaver, thare are-several disadvantages. If there are few
variavles wwav Irom bounds in the initial point then it is
diffaculs -~ ¥ind a good basis and the procedure may use many
aﬂ-'ﬂh ave teracions before it gives up and switches to the
candurs m;n-m-“ablon of artificials. Even worse, the procedure

does vt s i w=il with the way many model builders define
imitizi sawvne=- ‘mportant or critical variables are assigned
Teszerznie  cnlt:ix while unimportant variables are left un-

YU B e oy e TS
PG S - S SR

“u),es with "good" values, i.e. those away from

Tea.

VoAl LTT . : .= be selected as basic variables and changed
darzas whe aitial _terations, while variables with "bad" values,
aZee . C AT . Doura. ~re kept unchanged.

Lo T UtR2n ~Tensoure,

LP systems have a so-called crash procedure
©“2 find an initial basis. The purpose is,
.2 find a point with few artificial variables
..itial point for the Phase-~1 LP.

degcriv.ion of crash procedures can be found in
One of the procedures advocated in this
=2 simple principles:

L. wrder vhe —iuatis s and variables into almost triangular form.

2. Sﬂive zhe wo:eticny one by one in this order, keeping the
rariables foum drevistus equations fixed.

3. ¢f an ocguation is fﬂfeaoible, solve a larger subproblem
‘1:0Lv1n: scme of the ~revious equations. If still infeasible,
inlIysu e A srei1di2ied variable.

BT of SR I

=i! ~as:ly be generalized to nonlinear equa-

T ¢z almost triangular form is independent

~:n I Inveives the solution of one equation at a

278" -V be Jeneralized to nonlinear equations by

1T ar ExpLiCit solution with an iterative procedure

LRTO Ll YeWIoafs wewnod, Step 3 involves the solution of sets

27 waverar ~miations. e pave not yet implemented this step, but
a o2tiund Laced on hiewton:s method can also be used here.

“me

(Ve

~
P

he ordaring (o Gould and Reid's paper is based on the P3
:ro-eﬂnr. ig Jhellzzman and Rarick, 1971). It can also be imple-
nented . & siiyghtly different way as follows:

i. Compute cov counis as the number of nonzero Jacobian elements
14 eacnh row. Celumns with fixed variables are excluded.

2. Y7 there are no rows ilert, Stop. Otherwise, find RCmin, the
minimal row count.

3. RCmin = J: 3elect the row(s) with row count 0, remove the
row{s) rrom Iurther consideration, and go to 2.
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4. RCmin = 1: Select a row with row count 1 and its corresponding
column, remove the row and column from the Jacobian, update
row counts, and go to 2.

5. RCmin > 1: Seiect a row with row count RCmin and its corres-
ponding columns, remove the row and columns from the Jacobian,
update row counts, and go to 2.

The order in which the rows and columns are selected defines
their order in the zlimost triangular form.

The ordering procedure is not well defined in the selection
in step 4 and 5. Builders of LP models will usually not provide
initial values and the selection is therefore only based on the
sparsety structure of the LP matrix.

The situation is quite different for nonlinear rodels. As
a :esult uf the sequential solution procedure some variables will
be kept fixed, while the remaining variables will be computed as
functions of these fixed variables and of variables computed
earlier in the sequential process. We should therefore try to
order the variables and equations such that fixed variables have
"good" initial values, while the equations preferably are solved
with respect to variables without a "“good" initial value.

The freedom in selecting variables to keep fixed appear only
when RCmin > 1 in step 4 above. In the following we will discuss
how we determine whether an initial value is "good", and how this
influences the ordering. We will start with a small example.

XX

X%

Figure 2: The Jacobian Structure of a Small Model.

Fig. 2 shows the structure of the Jacobian of a wmodel with
four variables, three equations, and RCmin = 2. If any one of the
four variables is fixed, the three equations can be solved recur-
sively for the remaining three variables.

Let x(x;) denote the solution for xj; fixed and iet X be a
vector of initial values. Depending on which of the four
variables we fix we can compute four initial points: x(X,),
x(X3), X(X3), and X(X,). Note that some of these points may be
infeasible because ofwgounds on the variables. Also note that if
x; is fixed then the initial values of the other variables are
ignored, except as initial points in the solution process.

Our problem is to select one of these four points without
actually evaluating them all, i.e. from X only. A number of
characteristics of the different points may help us in the
selection:
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If X; has a "good" injitial value then x(Xj) will be a "good"
solution.

User supplied initial values are likely to be "better" than
default initial values.

If an equation is feasible, the variables appearing in it are
more likely to have "good" values.

If x; and x; are the only variables in an equation and this
equaéion is“feasible then x(X;) = ;(xj).

c o w »

We will in the following separate the variables into two
groups: variables with default initial values and variables with
defined initial values. The definition will depend on how the
model is communicated to CONOPT. When the model comes from GAMS
zero projected on the bounds is considered a default initial
value and other values are defined. Variables with defined ini-
tial values will in general be considered "better" that variables
with default initial values.

We will also separate the equations into feasible and infea-
sible constraints. An initial value that appears in a feasible
constraint will in general be considered "better" than an initial
value that appears in an infeasible constraint. If an infeasibi-
lity can be repaired by adjusting a variable with default initial
value the default variable could be an uninitialized intermediate
variable, and the infeasibility is not considered to be bad.

Based on these considerations we select a "best" row with
row count = RCmin whenever RCmin > 1. The selection is done by
giving priorities from 1 to 6 to the candidate rows and selecting
a row with the smallest priority. The priorities are defined as
follows:

1. Feasible with at least 2 defined vari-
ables. Since the equation is feasible the
defined values seem to be "good". Select
the variable with the largest Jacobian as
basic.

Y

2. Infeasible with 1 default variables that
can be changed to satisfy the equation.
The defined values seem to be reasonable.
Select the default variable as basic and
solve the equation w.r.t this variable.

[ 2

v

3. Feasible with 1 defined variable. Since
the equation is feasible the defined value
seem to be "good". Select the defined
variable as basic.




A

155

4. Infeasible with at least 2 default vari-
ables that both can be changed to satisfy
the equation. The equation can be made

feasible, but the solution depends on
which variable is changed. We select the
variable with the largest pivot to be
changed to minimize the absolute change.

5. Feasible with only default values. Since
all values are default the feasibility
seems to be accidental. Select largest
pivot as basic.

v

Infeasible. No single variable can be
S= = changed to make the equation feasible.
Select the variable that will reduce
infeasibility the most.

/

e e

»
>

Whenever a row is selected we try to make it feasible
immediately. The updated values of the variables are then used
to evaluate feasibility during the selection of the next row.
This is in contrast to the LP environment where the logical
ordering is done before the solution process is started.

When RCmin = 1 we must select a particular row with rcw
count one. If each row has its own column then the solution is
independent of the order in which the rows are selected. However,
if a potential pivot column intersects more than one candidate
row the solution will depend on which row is selected. In this
case we try to minimize the sum of infeasibilities in the remai-
ning rows, and the row selection is similar to the CHUZR proce-
dure in Rarick's Phase-1 procedure for LP.

Many equations will be feasible and we will have a basic
variable in most equations after the procedure outlined above has
been used. However, there may still be some equations without a
basic variable: Equations selected when RCmin = 0, and equations
that cannot be made feasible.

The basis can be completed with artificial variables and the
traditional phase~l procedure can be applied to minimize the sum
of the artificials. Alternatively, we may select the missing
basic variables from the variables away from bounds and use the
heuristic in Fig. 1.
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5. Computational Experience.

A set of tables with computational comparisons is available
from the author. We will here summarize some numbers from a
medium sized 8-period refinary model. The model has 1793 vari-
ables of which 1464 have defined initial values. The models 1593
equations are divided onto 95 pre-triangular equations that can
be solved recursively before the optimization and 2 post-trian-
gular equations that can be collapsed into the objective func-
tion. Of the remaining 1496 equations 1199 (80%) are made
feasible with a basic variable by the crash procedure while 297
equations are not assigned a basic variable initially.

The sum of infeasibilities is initially 4844.6. After
solving the 95 pre-triangular equations and removing the 2 post-
triangular equations there are 165 infeasible equations and the
sun of infeasibilities is 4772.6. The crash procedure produces
a pcint with only 30 infeasible equations (a reduction of 82%)
and a sum of infeasibilities of 33.14 (a reduction of 99.3%).

The original feasibility heuristic mentioned in Fig. 1
including the following ordinary phase-1 procedure required 1165
iterations and 582 seconds to find a feasible solution and the
overall optimization required 2596 iterations and 1698 seconds.
The crash procedure followed by the heuristic required 246 itera-
tions and 125 seconds to find a feasible solution (78% saving)
and 1669 iterations and 1139 seconds to find the optimal solution
{32% saving). The crash procedure followed by a straight minimi-
zation of artificials required 613 iterations and 219 seconds to
find a feasible solution (62% saving) and 2269 iterations and
1591 seconds to find the optimal solution (6% saving).

The saving on other models vary considerable, but is is
positive on almost all models. There is also considerable varia-
tion between the options for finishing the basis -- the old
feasibility heuristic or minimization of artificials.

One interesting result is that some difficult models that
CONOPT declared infeasible before now prove to be feasible. The
reason seems to be that the crash procedure moves many variables
with default initial values away from their bounds or from zero,
resulting in a better behaved point that is further away from
any singularities.

6. Conclusions.

Although the computational testing is still ongoing we can
already conclude that the new crash procedure is very promising.
Given a few good initial values we will on most models be able
to reduce the time to find an initial feasible solution. The
initial feasible solution will often be better which reduces the
following optimization time. And we seem to be able to solve more
difficult models that could not be solved before.

The more intelligent use of initial values may mean that it
is no longer necessary to supply initial values for many inter-
mediate variables. This simplifies model construction and may
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incourage model builders to concentrate on essential initial
values. User specifications of the quality of initial values
could enhance the procedure.

More work is still needed, in particular on:

- improving the selection of variables to fix, e.g. based on
information from several equations and on the influence on
the objective,

- completing the basis after the crash procedure, and

- 1limited backtracking when equations are infeasibls.
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1 Introduction

Structural optimization has become an increasingly important tool in the design process, due to
the continuously increasing demands on technical systems and their components. Because of an
extended application of structural optimization techniques to real, industrial problems, the portion
of so-called large scale problems increases accordingly. The latter problems are characterized by a
high deinand on computer resources (storage capacity, calculation time) within the solution pro-
cess. Various decomposition techniques have been developed in order to efficiently solve such large
scale problems {Wis71, Him73]. Parallel processing means a computational decomposition of a task
onto different processors or computer nodes, and therefore it is also a very general decomposition
approach. Here, the solution of shape optimization problems of complex shell structures on a par-
allel computer system will be presented. As an application we have chosen the shape optimization
of an automnotive wheel with respect to several load cases.

2 Treatment of shape optimization problems
The mathematical formulation of shape optimization problems can be written as follows:
srpkieay] _ A k¢ ea k(ra
FYRME) = Mip{ FIR*(e")] | R € G} (1)

G = {RMe) e R°| HIRNe™) = o

-

G[R*(¢™) 2 o
Rkl S Rk S Rk“}.
with
F : vector of objective functionals,
H,G : equality and inequality constraint functionals,
R* : shape functions,
3 : GAussian parameters,

R*, R* : lower and upper bounds for the shape functions,
G : set of feasible shape functions.
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The shape optimization problems formulated in (1) can be solved by means of indirect and direct
methods. Indirect procedures derive necessary conditions for the optimal shape using variational
principles and, subsequently, solve the resulting differential equations - generally by approxima-
tion methods. When a direct solution method is applied, the shape optimization problem (1) is
transformed into a multicriteria parameter optimization problem using approach functions with
free parameters R(£%,z*). Especially parametrical spline functions known from the field of CAD
[Boe84] proved to be highly efficient for various applications [Bra84]. The obtained multicriteria
formulation is subsequently transformed by means of preference strategies into a scalar parameter
optimization problem which can finally be solved by any Mathematical Programming algorithm
{MP-algorithm).

Structural optimization problems can be solved by an optimization procedure following the
Three-Columns-Concept {Esc91]. The three columnns are the optimization aigorithms, the struc-
tural analysis modules and the optimization model. All moduls can be chosen according to the
problem formulation. The direct optimization strategy is realized in the design model (Fig. 1).
The approach functions are chosen problem-dependent from an extensive library.

____________ Deomen | _ _Diufremnnes
| Maker | |
I Ly, i
l 1 n
Optimsi Inital Design
| Desigs To—emx, Stractunl
| . Pinmewen
| x* x I - —] ¥ Y =const
: | Rulel | 1
| ! - ]
. Shape Algontha” || -
| T—wx 1 L Apprm.:u;cam ] [
o X Optimization .
Optimization R(E) < I Mod
I'_ *1  Algoriam | Model | el
| e : o= ).
] 2 £ J Op f2.h Evaluation I
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dp dg 3k - :
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]

Figure 1: Optimization loop for shape optimization problems

3 Decomposition

The large-scale problems of type (1) occuring with the optimization of real.life technical systems
require a high storage capacity and extensive calculation times. The efficient solution of such
problems by means of the available resources (storage capacity/computation time) calls for the
application of decomposition techniques.

Fig. 2 shows the potential decomposition approaches for problems in structural optimization.
The decomposition methods usually employ several of the depicted decomposition approaches.
While model decomposition mainly aims at reducing the required computer storage, the com-
putational decomposition intends to reduce the computation time required for the solution.

The term structural decomposition means partitioning the state vector u and the corresponding
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| decomposition approaches

/\

. L. compuiational decomposition

! dno'u;omwn 1' = parallelization
structural decomposition of the

decomposition optimization moael

d

(s )

Figure 2: Clasciiication of decompasition approaches in the field of structural optimization

state cquatiors @ into ng subvectors,
u, = ['u.l,ug,.. .,u,.S], [¢|,¢2,. . "Q'ls] .

This partitioning can be done according to several substructures [Bat76, Guy65] or according to
different disciplines. If the structural subproblems are coupled with each other - this is in most
cases true - a coordination procedure has to be used.

Decomposition of the oplimization model requires the partitioning of the design variables =
and/or the constraints k, g into subvectors,

x, h,g = [zl)zh---,zns]y[hhh21"".hns]v [91192’-"vgns]'

After solving the subproblems independently, the solutions of the subsystems must be coordi-
nated. The coordination and the concurrent subsystem optimizations form a iterative process.
Methods using this approach are, for example, the DANTZIG- WOLFE-decomposition {Dan60] for
large linear optimization problems, Multilevel-Methods for hierarchically structured systems (e.g.
Wis71, Las/0)] or for non-hierarchical systems (e.g. [Blo90, Wu92]), and methods based upon a
substructuring (e.g. {Kir72, Bre89}.

If a suitable paralle] computer equipment is available, the computational decomposition, which
means nothing else than a parallel or distributed execution of independent calculation tasks can
Le appiled. Within the process of ontimization, the sensitivity analysis is a subtask suitable for
parallelization since the computation of the partial derivatives with regard to the design variables
are uncoupled processes and can therefore be parallelized. In many cases, the parallelization is
carried out in combination with a model decomposition (e.g. in combination with substructuring
[Top91, EIS91]). The computations in the subsystem level are then independent of each other and
can be parallelized. In order to quantitatively evaluate the gain achieved by parallelization, the
so-called speed-up S is introduced: T

= 2t
S = T!l ’ (2)
where T,., denotes the required calculation time on ore processor and T, the calculation time on
n processors.

For the parallelization a transputer system consisting of 20 transputers (T800) is available (Fig.
3). The transputers-are arranged in an array and their local storage capacities ranges between IMB
and 8MB. The definition of the processes, the communication between them, and the allocation of
the processors is carried out by means of the declaration language CDL (Component Declaration
Language) under the operating system HEeLios [NN90]. The topology of the processes can be
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Figure 3: Parallel computing environment

defined independently from the hardware topology.

In the present work a parallel substructure technique and the parallel sensitivity analysis is
employed for the solution of the shape optimization problems. A decomposition of the optimization
model is not carried out.

a) Optimization using parallel substructuring:

Substructuring is comimonly seen as the classical (static) decomposition technique for the structural
analysis of complex components. Reduced subsystem matrices are calculated separately for each
substructure, and these matrices are coupled at the main system level. After determining the state
variables at the boundaries (coupling nodes) of the substructures, the local (internal) ones can
be computed - again separately for each subsystem. Fig. 4a shows the flowchart of the parallel
structural analysis realized here, based upon the substructuring, where the computations of the
main and of the subsystems are carried out on an own processor each. Since the main system
processor is not employed during the subsystem computations, one subsystem is treated on the
main processor. The described procedure is not limited to the application of a special analysis
program at the subsystem level, but this analysis program must be able to create reduced stiffness
matrices and consider prescribed displacements.

The implementation of the above pracedure on the transputer system follows the master-slave-
concept. In this concept a process called master controls and coordinates a set of subsequent
slave processes. The program representing the slave contains all modules required for the various
calculation tasks at the subsystemn level (Fig. 4a). Additionally, it possesses a local database
which stores - even for several structural models - the necessary control data. This guarantees a
minimal data transfer during optimization because the updated geometry and the resulting state
variables have to be transfered only. The master process contains the complete optimization loop
including the routines for subsystem calculations, because one subsystem is also analyzed by the
master process. The necessary system-calls for the purpose of communication are carried out by
a small set of hardware-independent modules only, which reduces the effort when this concept is
implemented on another computer system.

b) Parallel sensitivity analysis:

The sensitivity analysis is a very time-consuming subtask within the optimization process. It
requires the calculation of partial derivatives of the objectives and constraints with respect to the
design variables (8f/8z;,89/0zi,0h/0z;). Here, we approximate them by finite differences (first
order differences). The approximation of the first derivative of an arbitrary function F(z) with
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Figure 4: Parallel substructuring (a) and parallel sensitivity analysis (b)

respect to z; using the forward difference is:

IF(z)]  _ F(zo+ Ai)~ F(z,) . |
0z; =T, ~ IAJ ' 4i= (101"‘-v30. + A:.,...,xon)_ (3)

As shown in (3), one needs as many functional evaluations as defined design variables n. One
functional evaluation means one pass of the optimization loop (Fig. 1). Since the functional
evaluations are independent from each other, the sensitivity analysis can be parallelized. In contrast
to the decomposition method described in a), this method only reduces the required computer
time but not the required computer memory. Fig. 4b depicts one iteration with parallel sensitivity
analysis. The optimal load balance of the processors can be obtained, if the condition

(n+1)/(m+1)el (4)

is fulfilled.

The implementation on the transputer system is also done according to the master-slave-
concept. In the master process all routines or modules which are necessary for the entire opti-
mization are included. Thus, the master process is executable even without associate processors
for sensitivity analysis. In contrast to the master, the slave process consists of those routines which
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are necessary for the pass of the optimization loop (for instance, no optimization algorithm is
included), and it has a local data base.

4 Application: Optimal layout of an automotive wheel

The automotive wheel to be optimized will be considered as a branched shell of revolution (unsym-
metrical details as vent holes are not regarded). Fig. 5 shows the initial design of this wheel and
one of the considered load cases (rolling bench test). In addition to the load case rolling bench test,
the load case rotating bending test will be considered in the structural model. The latter load case
is relevant for the design of the disk and for the connection of rim and disk. The degrees of freedom

bR ot ]

Figure 5: Initial design of the automotive wheel including a description of the load case rolling
bench test

for finding the optimal design are the thicknesses of rim and disk (each constant), the meridional
shape of the disk and the meridional shape of the centrepart of the rim (Fig. 5). For the description
of the meridional shapes of the disk and the rim the approach functions ”B-Spline (k = 3)" and
"Coupled circular arc/straight lines” are used. The thicknesses and 10 control points of the shape
functions are chosen as design variables. The weight is defined as the objective function and stress
and deformation constraints as well as shape constraints are considered. Fig. 6 shows the optimal
design of the automotive wheel for the given optimization model. The weight of the optimal design
is 7.02kg which means a weight reduction of more than 30% in comparison to the feasible initial
design (10.17kg, obtained by pure sizing). Then, the shape optimization problem of the wheel is
solved by means of the decomposition methods described in the section 3.

Method 1: The parallel sensitivity analysis is applied. For that purpose, 0 to 12 associate pro-
cessors will be used successively. Thus, we cover the whole range from sequential up to full parallel
sensitivity analysis.

Method 2: Besides the parallelization of the sensitivity analysis the structural model will decom-
posed and analyzed by means of parallel substructuring. For this purpose, the wheel is cut off
at the branch and partitioned into three substructures. Using this method the needed computer
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Figure 6: Optimal design W=7.02kg

memory is reduced in addition to the reduction of the computer time. The assignment of proces-
sors to the substructure processes (slaves) is fixed while we use variable numbers of processors for

the sensitivity analysis (0 to 4 associate processors). Thus, for this method we use from 3 to 15
processors.
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Figure 7: Speed-Up and efliciencies for method 1 and method 2

As shown in Fig. 7a, we save considerable computational time with both methods. For the
method 2, the saving in computational time is less than for method 1 caused by the greater portion
of sequential computations during the substructuring. For the valuation of these two methods how-
ever, one has to take into account that method 2 saves computation timne and computer memory.
The efficiency (efficiency=speed-up/number of used processors) is a mean vaiue for the utilization
of the processors. Concerning the efficiency, method 1 is also better than method 2. The non-

monotonous course of the efficiencies in Fig. 7b is caused by the violation of condition (4). (except
for 0 or 12 associated processors).
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On Multidimensional Partitioning
Problems: Facial Structure and
Applications

C.E. Ferreira M. Grotschel A. Martin
R. Weismantel
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In this talk we deal with a subproblem arising in the design of a main-frame-
computer. This problem can be stated as follows:

Let be given a set N of items and a set M of modules. Each item: € N
has a weight f;. Similarly, with every module £ € M a capacity Fj is
associated which represents the area of the module. Moreover, there is given
a list of nets Z = {T,...,T.}. Each net T; is a subset of the set of items
which has to be connected via a wire. Finally, every module k € M has a so-
cailed cut capacity Sk, which restricts the number of nets that may leave this
module. Roughly speaking, the problem we consider consists in finding an
assignment of the items to the modules such that certain technical restrictions
are satisfied and a very complicated objective function is optimized.

The most important constraints are the following:

The sum of the weights of the items that are assigned to one module
must not exceed its capacity.

For every module k € M the following requirement must be satisfied:
The total number of nets that contains an item assigned to k and some
other item assigned to some module ! € M \ {k} must be resticted by
the cut capacity Si of the module.

Let a: N — M denote some assignment of the items to modules such that
the constraints are satisfied. The objective value of this assignment a is of




167

the form

Z K - tce(a) + A - ec(a).

keM
Let us first focus on the first term of the objective function, i.e., the internal
cost. K(i is a constant which corresponds to the fabrication cost for module £.
Roughly speaking, the internal cost of some module depend on the number
of wires that must be routed within this particular module. In fact, the
internal costs are a staircase function. This is due to the fact that every
modaule consits of several layers on which the routing of the wires talkes place.
Depending on the number of wires that must be routed within some module.
a certain number of layers is required. A jump of the stair case fuction occurs
whenever additional layers for some module are necessary, since the number
of wires exceeds a certain threshold. The external cost ec(a) represent the
number of nets running between different modules. The parameter ) is an
estimation of the cost for one wire.

From a mathematical point of view this application has the flavour of both
a packing aspect and a multi-partitioning aspect. The packing aspect arises
from the fact that certain items must be assigned to modules such that given
capacities are not exceeded. Similarly, one has to decide which nets are
connected via a wire within which module such that the given cut capacities
are still satisfied. On the other hand, the multi-partitioning aspect is present
as well, since the number of nets connecting items which are assigned to
different modules has a strong impact on the objective function.

We modell this problem as an integer program with linear objective function.
Due to the very complex objective function we obtain a model which involves
several clumsy and technical conditions. Moreover, for practical applications.
the model requires several hundreds of thousands integer variables. Thus, we
decided to study relaxations of this problem. Working in this scheme a first
relaxation consists in the multiple knapsack problem, which can be viewed as
the task of assigning a given set of items to a given set of modules. Here.
we introduce boolean variables z;, 1 € N,k € M with the interpretation
s = 1, if item 1 is assigned to module k and z,;, = 0 otherwise. The re-
laxation considers just the assignment of items to modules such that the
correponding area capacity is taken into account. The number of nets run-
ning between different modules as well as the cut capacity of the modules is
completely neglected. The second relaxation extends the multiple knapsack
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model in ihe sense that nets running between different modules are approxi-
mately taken into account. For every pair of items ¢, j such that there exists
a net connecting both ¢ and j, we introduce an additional 0/1-variables y;;
with the following interpretatio.:: y;; = 1 if ¢ and j are assigned to different
modules and y;; = 0, otherwise. Using these variables we estimate the num-
b.r of nets running between different modules by the number 3, ;cn y:;. This
vields to a multidimensional graph --artitioning problem. The last relaxation
we are going to consider improves the approximation of the nets and leads
to a multidime::sional partitioning problem in a hypergraph. Rather than
introducing variables y;; betwe :n pairs of * ems, we associate a variable zy
with every module k£ € M and every net T;. The variable z;; is set to 1, if a
proper subset of the set of item: T} is assigned to module & and is set to zero,
otherwise This class of vari- bles ena’ les us to mocel the cut capacities of
the modules as well as to count the number of nets running between different
modules.
Wi h each of these relaxations we :ssociate a polyhedron whose vertices are
in one to one correspondence to the feasible solutions of the proper model.
Then, solving o:ie of the models reduces to optimizing a linear objective
function over the corresponding polyh:dron. In order to apply linear pro-
gramm:ng techniques, we need a descr.ption of the polytope by means of
equations and inequalities. Thus, a first step 1n solving these problems via a
polyhedral approach consists ;.. a concise study of the underlying polyhedra.
In th's talk ~e will report on the fac'ai structure of the three relaxations
s well In particular, .here is a nice relationsh’p between facet-defining
‘nequal tics fo: che three poiyhedra.
First. one can prove that every facet for the raultiple knapsack polytope
defines a facet “or the multidimensional graph partitioning polyhedron. Thus,
the facizl structure of tiie multiple knapsack polytope is completely inherited
by the mul-.ipartitioning graph polyhedron. Similarly, valid inequalities for
the polytope associatzd with the second relaxation can be modified such
that they are valid for an appropriate multidimensional hypergraph polytope.
Unfortunately, not every facet for the multidimensional graph partitioning
polyope is inherited by the corresponding hypergraph polytope. Yet, there
are several examples where we may resort to facet-defining inequalities for
the multidimensional graph partitioning polytope, and by modifying them,
we obtain facets for the hypergraph polytope. An example of this kind is the
so-called cycle inequality which we will discuss in the talk.
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We conclude by giving some remarks on the relationship between the third
relaxation and the original problem. Here, it turns out that the third re-
laxation takes the original side constraints into account. The only difference
between the two of them is that the objective function in the hypergraph
model is simplified and provides3just a heuristic estimate of what is really to
be minimized. However, if one is able to handle the multipartitioning hype:-
graph polytope from a theoretical as well as from a practical point of view.
one could start with some objective function and optimize over this polv-
tope. If the solution is feasible for the original model we stop. Otherwise, we
modify the estimate of the objective function for the hypergraph model in a
lagrangean fashion and repeat this process until we terminate with a giobally
feasible solution. Surely, the solution provided that way is not necessarily
optimal for the original problem. However the objective function is somehow
related to the original one and thus, an optimal solution to the relaxed model
that is still feasible for the original one should be not too bad. In particular.
one should expect that it meets the requirements, practioners are interested
in.

At least from our point of view, this type of approach (providing a series
of reasonable relaxations to a very complex problem and handling the re-
laxations theoretically as well as practically) is best what one can expect.
since theoretical and practical progress up to date is still far away from solv-
ing large scale real world problems to optimality, which are as complex as
problems occuring in the design of main frame computers.
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1. Introduction
Spacebome communication antennas are often required to illuminate an ir-

regular coverage region on the earth. To achieve this effectively the radiated
beam is shaped in order to concentrate the power on the region. A shaped
beam also known as a contoured beam can be obtained with an offset
parabolic reflector with multi-feed array shown in figure 1.1. This antenna
generates a set of small element beams. Each element beam is generated by
a feed that radiates towards the reflector and the element beam is the reflect-
ed secondary field. Each feed is a small metal hom which transmits to free
space. The feeds are arranged in an array such that the corresponding ele-
ment beams together cover the region (see figure 1.1). The antenna input is
transformed into feed excitations i.e. input amplitudes and phases by a
beamn forming network. Thus the element beams are excited corresponding-

ly and the contoured beam is obtained.

The classical contoured beam optimization problem is then given the anten-
na to adjust the excitations to maximize the power gain within the coverage.
Additionally, isolation regions may be included in which the power level
shall be suppressed. Several procedures have been proposed for this prob-

lem including minmax formulations to maximize the minimum power gain

((1), (2} & [3)).
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Here we shall describe a procedure in which the feed array parameters are
included into the optimization. The shape of an element beam is highly de-
pendent on the feed aperture. Feeds with circular or squared apertures create
a power gain pattern with circular contours. Rectangular feeds leads to elon-
gated element beams (figure 1.2). Because of size, weight and losses it is
desirable to keep the number of feeds as small as possible. A well-fitting
contoured beam can be obtained with a limited number of non-circular ele-
ment beams. The size and position of the corresponding feeds are usually
found by hand. As the number of parameters characterizing the feeds is

large it is likely that a manually adjusted array is far from optimum.

2. Field calculations

The secondary far field from a separate rectangular feed must be calculated
in different far-field directions. The parameters of a rectangular feed are the
aperture dimensions a and b and the position of the aperture centre x¢ and yg
in the focal plane (Fig. 3.1).

The focal plane coordinates are denoted x¢,ys,z¢ and the corresponding basis
vectors Xg, Y5, Z¢. A unit direction vector is defined by r¢=(ugve W) =
(Xpypzors , where 1 = (x% +y% +2%)%. The radiated electrical field from the

feed can be written as

(fewe = (x¢-Teue + ye-Teve)ze ) f(ug,ve)

where A is a normalization constant, j is the imaginary unit (j2=-1) and k is
the wave number related to the speed of light ¢ and the frequency v by
k=2rv/c. The unit vector -?f is either equal to x¢or y¢ depending on the feed
polarization. The function f(ug,v() is the Fourier transform of the aperture
field of the feed denoted h(x(,y¢), where a simple model is used
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for —a/2<xp<a/2

= {cos(mye /1) and —b/2<y; <b/2 2.2)
0 otherwise

he(xg.ye)

Next, the magnetic field H ‘radiated from the feed is found from H =rEg.
On the reflector surface a current distribution J(x,y,z) is induced, calculated
by the so-called physical optics approximation, J(x,y,z)=2nxH, where n is
the unit surface normal. The field and currents are here considered to be
functions of the coordinates x,y,z of the antenna coordinate system (see
rigure 1.1). Hereafter the secondary field radiated by the reflector can be
found from ([6])

Egy = H(J(r)-(J(r)-f-)-f)eJ’k"f ds (2.3)
A

which gives the electrical far field in the direction r. The vector r=(x,y,z) is
the integration variable in the surface integral over the reflector area A. The
quantities of interest are the polarization components e, and e, obtained
from Eq,, by the projections ey, =E¢,- €5, ande,, =Eg,- er., where e,
and e, forms the desired polarization basis. (* denotes the complex conju-

gate.)

3. Array topology and minmax formulation

The feeds are mounted with their apertures in the focal plane (figure 1.1).
During the optimization the apertures will vary in size and position. The
feed array parameters cannot, however, vary independently since no aper-
ture overlaps must occur. To avoid a considerable number of linear con-
straints we have chosen an approach where the array must be composed of
a collocation of rows of rectangular apertures (Figure 3.1). Let the feed co-
ordinate system in the focal plane have axes parallel to the aperture edges
and let the rows be organized in the xg-direction. Then all feed of an internal

row must have the same height and ycoordinate for the aperture center
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whereas the heights of the feeds in the top and bottom row can vary inde-
pendently. All vertical edges of neighbouring feed aperture- in a row must
coincide and all horizontal edges of neighbouring rows must coincide. With
this topology the independent variables are:

—  One common height for all feeds in each internal row and individual
heights for the feeds in the bottom and top rows.

-~ For each row the x~coordinate of the aperture center of one of the feeds
and individual widths of all feed apertures.

— ygcoordinate of the aperture center of a main reference feed and rotation
of the complete array.

The maximum number of variables that can be used equals N+2R+n+ng,
where N is the number of feeds, R the number of rows and ny and np, the
number of feeds in the bottom and top r-w resp This number may be re-
duced if identical feeds are required. Due to field model limitations bounds
are needed on the aperture dimensions. Let x, € R"a be a vector with the

chosen array variables, n, < N+2R+n+ng.

The desired power gain is specified ove - a se' of synthesss stations ade-
quately sampled to define the coverage and isolation regions. Let the com-
plex number eij(xa) denote the far field a: the 1'th station of the j'th element
beam found as discussed in section 2 excited by unit amplitude and zero
phase. The complex vector €;(x,) C holds the values from the N elements.
Further, let a; denote the j'th complex excitat' on where Re(aj) = A jcos(Ph j)
and Imaj = Ajsin(Phj), Aj and Phj being the j'th excitation amplitude and
phase. The complex excitations are elements of the vector ¢ € CN. Since the
optimization is performed in real variables we uze x, € R2N"1, such that
aj(Xe) = (Xgj.1 +i Xg5), j=1,...N-1 and an(xe) = (N1 + 1 0). Therefore 2N-
1 independent variables are available, since phase is a relative quantity. The
total vector of independent variables is then the concatenation x = X,//X..,

x € R", n=2N-1+n,.
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With the above notation the power gains at the station can be expressed as

(alx.)-&(xe) Na(xe)ei(xe) )*
pi(x) = , i=1,...M 3.D

a(xe)2(xe)"

where M is the total number of stations. (See (3]). For each synthesis sta-
tion a residual function is now defined which is the difference between the
realized gain normalized by the factor G and a specified relative gain goal

pio, ie.
fi(x) = w;@(x)/G, - pip) (3.2)

where G, should be slightly above the expected peak power gain. The spec-
ified relative power gain is used to express the station levels of the desired
pattern, such that p;, = 1 for a coverage residual and p;, = 0 for an isolation
residual. The weights are used to equalize the size of coverage and isolation
residuals. The minmax problem to be solved consist of determining X e RP
which minimizes the maximum residual -

F(X) =min F(x) =min  max Ify(x)l (3.3)
xe R xe R 1<icM

4. Solution of the minmax problem

The problem (3.3) is solved by the approximate gradient version of the gen-
eral minmax method of Madsen [4]. This is an iterative trust region
method. In each iteration the residuals are linearized and the linear model
function is minimized subject to a bound on the solution. The proposed step
is accepted as the next iterant if F decreases. Otherwise the step is repeated
with a reduced bound. To solve the problem on small computers some ad-
ditions were needed. In each step worst and near worst case residuals are
identified and then only these are linearized. Thus the storage needed is re-

duced by approx. 80%. Gradient approximations are obtained by a combi-
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nation of Broyden's rank one formula and differences. The linear model
function is minimized by the exchange method of Powell {S]. In a re-
designed implementation an option for starting with a good guess of the
final set of active linearized residuals defining the solution has been added.
Then, in the non-linear minimax the set of active linearized residuals found

in one step is used as the guess for final set of the next.

S. An example

One of the test cases for the procedure was the Brazilsat Antenna System
discussed by Patel & Chan (2]. The requirements were 27 dBi for a high
gain region shown as a polygon on figure 5.2 and 25 dBi for the rest of
Brazil. (dBi is the power level above isotropic level in dB (=10loglp;))). The
antenna consists of an 1803 mm offset reflector illuminated by 6 rectangu-
lar feeds as shown in figure 5.1. A total of 97 synthesis stations were used
and the total number of variables was 25. The original array and excitations

were used as initial point for the iteration.

A minmax optimization using only excitations as variables yields 28.61 dBi
and 26.61 dBi for the high and low gain zones resp. (Fig. 5.2). The result
from the optimization with array parameters included is shown in figure
5.3. The power gains are 29.74 dBi and 27.74 dBi for the two zones.

6. Concluding remarks

General methods for non-linear minmax problems have been used success-
fully for contoured beam antenna optimization with the excitations of the
feeds as variables. If the array consists of different sized rectangular feeds
the performance of the antenna can be improved further, if the feed array pa-

rameters are used as variables together with the excitations.
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Abstract :

We study a production management in clothing industry. The model we use is a large
scale linear integer programming problem with a lot of structure. Lagrangean relaxation
method coupied with heuristics yields a good bracketing of optimal solution by dualizing the
state equations. Subgradient technique is used to solve Lagrangean dual, each iteration
reduces to exact solving of knapsack problems.

Key words : Lagrangean relaxation, integer linear program, production problem,
subgradient optimization.
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1. Introduction

We consider a problem of production management in process industry application. This
problem can be formulated as a large-scale linear integer programming problem strongly
structured.

The paper develops a Lagrangean relaxation technique that successively solves a
sequence of generalized knapsack problems. A near optimal solution is obtained via a
subgradient method coupied with an heuristic. Numerical experiments with real and randomly
generated instances are in progress to validate the approach.

Section 2 deals with a short description of the production system and a deterministic
model formulation. Section 3 describes a suitable strategy for large-scale instances: eacn
iteration of an ad hoc Lagrangean relaxation reduces to exact solving of small-size knapsack
problems.

2. Model formulation

We study an inventory production management problem in the clothing industry. An
effective production planning system determines the appropriate levels of production and
inventory according to fluctuating demand requirements and minimum costs.

Generally speaking, a manufacturing production system in the ctothing industry can be
viewed as a sequence of transformations applied to raw materials to obtain finally a finished
product.

In the formulation, external subsystems such as extraction and transportation of the raw
materials are neglected. Then the process can be subdivised into three subsystems (see
figure } :

- transformation of the raw materials into raw pieces;
- shaping of the raw pieces into shaped pieces;
- assembling of the intermediate subproducts to provide the finished items.

Each subsystem is characterized by the following decision variables: vector of products,
stocks and demands. We assume that a discrete deterministic mode! is available and that
external demands of the global system are given ({4],[8]).

Let N denotes the number of items to fabricate, M cardinality of g, set of raw materials
index, J cardinality of E, references set of elementary pieces forms, L CE, x &, the number of

intermediate subproducts of transtormation and shaping subsystems, T the number of periods
in the planning horizon and k=3 the number of subsystems.

The following underscripts are aiso used in the description of the model.
k : index of system (k=1,2,3);
t :time period (t=1,..,T);
i : index of finished product if k=1 (i=1,...,N) or of intermediate subproduct if k = 2,3
(i=1..,L).

We now introduce vectors of decision variables of the problem :
Y:‘ =1 yi'f 1 ] : number of product i to be produced during period t in subsystem k.

U:‘ =] u:f,] : number of storage i during period t in subsystem k.
D,k = d,-'f, ) : demand of product i during period t in subsystem k (k=2,3)

D: = [d:,] : given external demand of product i during period t .
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figure : Discrete production system in manufacturing

The following vectors of data are required for formulation
R," =] ri'fl] : availability factor of product i of subsystem k during period t.

S:‘ =] s'ft] : availability factor of storage i of subsystem k during period t.

cp,k : resource production availability of subsystem k during period t.

wlk : storage of resource availability of subsystem k during period t.

Yf =[y:f,] : maximum of production allowed per period for item i of subsystem k.

uf = g'f‘] ;U:‘ = [ﬁ:f,] - lower and upper bounds for storage of product i from

subsystem k during period t.
C,1 ke { q‘:‘ ] : unit production cost over period t for item i of subsystem k.
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ka ={ cﬂ‘] T unit storage cost over period t for item i of subsystem k.
Cf Ko { q:_‘:(] : cost of modifications when fabrication changes from a period to another.

and the matrix Q = (a,‘) :

a;: number of necessary pieces | to fabricate item i.

The constraints of the problem are either technological or economical. These constraints
and production cost are assumed to be linear. We suppose that the objective function is also

linear according to product (y'if,). stock (u,k.t) and change of activity level from a period to

another (yf,-y:f,,,). Hence the mode! can be formulated as the {ollowing large-scale integer

linear program with 2(N+3L)T variables and (3N+8L+6)T constraints:

3 7 “
min  z= T ¥ CVi+cHUr+ CviYE)
Keltlel
st
K\ K k
RYy <q (k-1)
o<y, <y (k-2)
YU <y (k-3)
Uil <ot (k-4)
k kK J k "
Uf=US+ 5 (Y- D) (k-5)
6=1
pZ=QY, (2-6)
Dy =Y; (3-6)
Ve, UK, 0% integer  k=1,2,3 t=1,..T
The initial conditions US and Y'é are given and set to zero and we assume Cf ®_0.

3 Lagrangean approach

The coupling constraints (2-6) and (3-6) that link the subsystems are used to eliminate
only the decision variables 0%? . After rearranging terms, the problem can be stated as an

equivalent linear program with 2(N+2L)T variables and (3N+6L+6)T constraints :




3
min £ T{F*vF+ citut
k=1 (=
st .
RIY! S o
osy" <¥ O~
(P)
1 o 1 1
U = Z{Yg-Dy)}
6=1
2 ! 2 1
Uy = Z{YO'QYQ}
8=1
3 A 3 2
U = S{Yy-Yy)
8=1
Y,",U',‘ integer

with F*=G*+c*cX andc¥,=0
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S:‘ U:‘ < \y:
u<ut <
(1-5)

(2-5)

(3-5)

k=1,2,3 t=1,...T

By dualizing the state equations ((k-5), k =1,2,3) with a multiplier V one obtains the

Lagrangean relaxation subproblem :

B 3 T
min cste + k}: pX| G:k Y',‘ + G",’k U',‘ }
=] t=1
st )
Rx Y( S 9y
k <k
LR(VY) 0sYf sV - k
S, U, sy,
Ut s uk < U
YY, u¥ integer k=1,2,3 t=1,.T

where V= (V{, V2 V?) V:"[Vi',(t]

I (viVia)

BF:3+ {V:

[: 213

G‘" = F," .

13

G

T 1 t 1
cste=- TV, Y D
t=] 0=

12 2 I 1.2
G? «F2+ e‘s:{v‘,-vem
=|

G* =G Y
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Each subproblem (LR(V)) can be decomposed into 6T knapsack problems over period
1, subsystem k and variables Y:‘ and U:‘. The first 3T subproblems are knapsack problems

with upper bounded variables

[ min G:k Y:‘

st ok « k=1,2,3
k RiY, <oy

(LR1(V))) ‘

and the 3T other subproblems are knapsack problems with lower and upper bounded
variables :
min G,Zk U':
s.t. k=1,2,3
K skuk <yt T
(ILR2{V)};)

u("su': < Uy

L
The corresponding Lagrangean dual given by

() v

where v(.) denotes the optimal value of problem (.), is solved by a subgradient algorithm ([3])
and v(D) is a lower bound of v(P).

4 Preliminary conclusions

This approach is a suitable alternative to the one provided by Soenen ([8]). In his
paper, the size of the model is reduced to (N + 2L)T variables and (2N + 4L+6)T constraints by

using the state equations (k-5) and coupling constraints (2-6)-(3-6) to eliminate the vanables

U1'2'3 and D"'2. Then the Dantzig-Wolfe decomposition ([2]) is applied to solve the LP-

relaxation and an integer feasible solution is obtained by rounding the LP-optimal soiution.
The author has also suggested to split the problem by creating copies of the original variables

Y2 of the shaping subsystem. hie was among the first ones to suggest the idea of variables
1 g9 99

splitting and later Guignard and Kim ([6],{7]) formalized this idea to a general mixed-integer
programming problem. But in this case, the subproblems induced by the dualization of the
copy constraint do not reduce to knapsack probiems. Though our model has twice more
variables, the approach is attractive when the size increases. First it is weli-known that the
bound provided by the Lagrangean dual is generally tighter than the LP one. Secondly, at
each iteration of the subgradient algorithm, the subproblems are knapsack of small-sizz and
easy to solve exactly. Moreover feasible solutions can be constructed, starting from the
optimal solution of each subproblem, to furnish a bracket of the optimal solution of the initial
problem (P).
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The aigonthm was implemented in GAMS 2.25 (General Algebriac Modeling System
{1]) with solvers ZOOM or LAMPS. First numerical expenments show that our approach Is
suitabie for large-scale instances.
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Abstract

Wae consider various relaxations and/or decompositions for solving linear integer minimax
problems. The main results concern the comparison of the bounds they provide and necessary
and sufficient conditions to obtain sharper bound or null duality gap with Lagrangean
decornposition.

1 introduction

Confronted with the problem of minimizing, in integers, the maximum of several
functions, one usually introduces an extra variable, say y, to be minimized, and writes
constraints which force y to be no less than these functions. These new contraints destroy
whatever structure the problem had initially, and render its resolution much harder. One can
obtain lower bounds on the optimal value of y by relaxing these constraints and then optimize
the bound thus obtained. We will consider several relaxations and compare the bounds they
provide. We will aiso study some specific minmax models and provide preliminary
computational evidence on the quality of the bounds.

In section 2 we show how various relaxations and decompositions compare in terms of
the bound they provide when only the new constraints are dualized. In section 3 we consider a
two-level relaxation scheme, where complicating constraints of the initial structure require
relaxation. An illustration of the main results is provided by an example in section 4.

Notation

Wae shall use the following notation. Given a constrained optimization problem (), (_.-) will
denote its continous relaxation, FS(.) its feasible set, OS(.) its optimal set, 1.e. the set of all its

optimal solutions, and U(.) its optimal value. Co(S) will denote the convex hull of a set § of RN
and the superscript t transposition.




186

2. Minimax constraints dualization

Consider the following linear minmax problem (P)

(P)

min max Fi(x)
xe8 i=1,p

where § is a discrete subset of R" and the Fi's i = |,...,p, linear functions of the form Fi(x) =
fix+gi.

Let us now introduce a new variable & to represent the maximum of the p functions Fi(x) |
and let us rewrite (P) as

) [ min {§|Fx+g<de,xe S}

X,8

where F is the pxn matrix [fi}ia1,0, g the vector (gi)i.1,, and e the all one vector (1,...,1) of RP.

The new constraints Fx+g < de destroy whatever structure the set 8§ had initially, and render the
resolution of problem (P) much harder.

The first basic results concern the comparison of bounds provided by various relaxations
which are obtained by only dualizing the minimax constraints Fx+g < 5e.

We introduce the set of multipliers U = {ueRP | u 20, i uj = 1} and the maxmin dual
i=1
problem (Q)
max min u(Fx+g)
@) I: ueU xe$8

As § is not a convex set, the classical minimax inequality holds and we have the foliowing
inequalities

U(P) = min { max { Fi(x) |i=1,.p}| xS }

=min{max { u(Fx +g) |ueU }|xeS }

2max { min {u(Fx + g) | xeS } |ueU }= V(Q)
Hence the minimax duality gap o = U(P) - v(Q) is due to the nonconvexity of S. Compactness

and convexity of 8 are sufficient but not necessary conditions 10 have ¢ = 0. When S is
compact, arguments based on Lagrangean duality (Geoffrion, [3]) lead to the equivalence
between (Q) and the following linear program (P*)

. min {8} Fx+g < de, xe Co(S) }
(P%) 5
Therefore the duality gap ¢ can be positive only when the feasible set { § | Fx+g < de, xe Co(S) -

} has noninteger vertices.

We now compare the optimal value U(Q) with lower bounds of (P) provided by three
different relaxations of the minimax constraints Fx+g < de.
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Problem (P) is equivalent to (P°), in which we create multiple copies of § as a p-vector z :

o min {le‘lex+gsz,xeS,z=Ez}
(P°) P
X,z
. 1 it j=i+l,i=1,..,p-1
where E is a (p,p) cyclic permutation matrix such that: El=i1 ifj=1,isp
. 0 otherwise

We now dualize the copy constraint z=Ez with multiplier u and obtain the Lagrangean
decomposition subproblem

(LD(u))

[ min {p(u)z | Fx+g <z, xe8§}
X,Z

where ¢ is the linear function on RF defined by ¢(u) = u(l-E)+§e‘ and | the identity matrix.
The corresponding Lagrangean dual (LD) is

(LD) [ muax v(LD{u))
where U(LD(u)) = i min { ( % +Uj - Uj-1)Z | Fijx+gj <2 xe S }

j=1
We also define the Lagrangean and the surrogate duals of (P) relative to the minimax
constraints Fx+gx de:

N

where U(LR(u)) =min{ 3 + u(Fx+9-3&) | xe8 } = ug + min { (1-ue)d+ufFx | xeS },

and
o [ gmeew
where U(SD(u)) = min { & | u(Fx+g) < due, xe8 }.

The following theorem states that all the above mentioned duals of (P) provide identical
jower bounds equal to U(Q)

Theorem1 U(P) 2 1(Q) = V(LD) = U(SD) = V(LR) Q

To conclude the section, we give sufficient conditions under which the duality gap o
equals zero.

Proposition 2.

Let u* be an extreme point of the convex set U = {ueRP |u 20, i ui=1}andleth
i=1
denote the index such that u*n = 1. If there exists an optimal solution x* of the relaxation
(Q(u”)): min {u*(Fx+g) | xe 8 } such that: max {(Fx*+Q)i|i=1...p} = (FX*+Q)n
then u® € OS(Q), x* € OS(P)ando =0. 0
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3. Integer problems with special structure

In the section 2, we have assumed that the relaxed problems max{ fy(x) | x € 8§ }, for
linear functions fy(x) = u(Fx+g), could be solved, at least reasonably easily, so that no
relaxation of the constraints defining 8 was necessary. In this section, we shall consider cases
for which S contains so-called "camplicating” constraints, requiring relaxation of some of the
constraints in 8. The bounds may not be as strong as those described above, because of the
two-level relaxation, yet they may still provide one of the best approaches to solve such
problems.

So we consider now the case where the constraint set S can be partitioned into two
subsets S = {x | Ax <b,Cx <d,x € Q}, where Q c RMxZ"M is a discret subset and Ax<b
are the complicating constraints. The problem (P) is then equivalent to

min {§|Fx+g<de, Ax<b,Cx<d, xe Q}
P x5
First we compare the bounds obtained by relaxing the minimax constraints Fx+g < e

and the complicating constraints Ax < b. The following relaxations differ in the way one dualizes
the minimax constraints and the compilicating constraints. .

Problem (P) is equivalent to problem (Pi), i=1,2,3, in which we introduce muitiple copies
of das a p-vector z = (24, 22, ..., Zp), and one copy y of x :

(P1) [ min {:—,e'lex+g <2, Ay<sb,Cx< d,x=y,z=E2,xeX, yey}
X,¥.Z

(F2) [ min (%e'zIFx+g <z, Ax<b,Cx < d,z = Ez, xe Q)
X,z

pa min {8|Fx+g <86, Ay<b,Cx< d,x=y,xeX,yey}

(P9) Xy,

with XY = Q.

We dualize all the copy constraints in (P1) and obtain a first Lagrangean dual

1
(LDY) [ :‘.a: u(LDY(u.v))

where U(LD(u,v)) = min {p(u)z - vx | Fx+g<2,Cx<d,xe X} + min{vy |Ay<b,ye Y}

In (P2) . we dualize the copy constraints with multiplier u and the complicating constraints
with multiplier w, to obtain the second Lagrangean dual

2
(LD?) [ . n:va; o U(LD2(u,w))

where U(LD2(u,w)) = -wb + min {p(u)z + wAX | Fx+g <2,Cx<d,x e Q)
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Finally, in (P3), we duaiize the copy constraints and the minimax constraints and obtain
the third Lagrangean dual

[ max U(LD3(u.v))
u20.yv

where U(LD3(u,v)) =ug + min {(1-ue)d +{uF - v)x |Cx <d,xe X} +min{vy |Ay<b,ye Yy}

(LD3)

We also define the standard Lagrangean dual by relaxing the constraints Fx+g < de and

Ax<b
max U(LR(u,w))
(LR) [ u20,wz20

where U(LR(u,w)) = -wb+ug+ min { (1-ue)d+(uF+ wA)x |Cx <dxe Q)
The next proposition sums up the relationships between all these Lagrangean duals.
Proposition 3 U(LDY) = v(LDJ) and U(LD?) = U(LR) 0

Since (LD') and (LD3) are equivalent, we will call (LD) this one true Lagrangean
decomposition of (P), and since (LD2) and (LR) are equivalent, we still simply call (LR) this
Lagrangean relaxation.

To discuss the quality of the lower bounds provided by (LD) and (LR), we introduce the
LP relaxation of (P) denoted by ( P )

— min {8 |Fx+g<de, Ax<b,Cx<d, xe co(Q)}
(P) <8

The main properties may be summarized as follows:

Theorem4
(i) v(Q) 2 y( P ); it (P) has the Integrality Property:
{x|Ax<b,Cx<d,xe co(Qd)}=co{ x| Ax<b,Cx<d, xe Q}

then U(Q) = U(P ) .

(i) if Y is convex, then v(LD) < U(LR) . .

(iii) 1 Y is convex and co(Q) = co(X)Y, then U(LD) 2 (P ).

(iv) u(Q) 2 max { U(LD), u(LR) } .

(V) If X = Q then U(LR) 2 U(F); if (P) has the partial Integrality Property:
{x|Cxsd,xecolQ))=co{x|Cx<sd,xe Q}

then V(LR) = U( P ).

(vi) if X = Y = Q then U(LD) 2 U(LRY); if (P) has the partial Integrality Property:
{x|Ax<b,xe co(QQ)}=co{x|Ax<b,xe Q}

then v(LD) = U(LR). 0

Theorem 4 is important for recognizing the cases where Lagrangean Decomposition
could provide tighter bounds than Lagrangean or LP relaxations. This will happen frequently

when X =Y = Q and (P) has not the partial Integrality Property { x | Ax < b, x € co(€2) } = co{ x
|Ax<b,xe Q}.
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The following theorem gives sufficient conditions to obtain v(LD) equal to v(P} and
generalizes proposition 2.

Theorem 5 Let (u*,v) e OS(LD) and (x*,y") € OS(LD(u*,v)). If x* = y* then
(i) For any muitiplier v 2 0, U(LD{u*,v)) = u(Q(u*)} .
(ii) If u* € OS(Q) then V(LD) =v(Q) .

(iii) It u* is an extreme point of U and max{(Fx"+g); | i =1....p} = (Fx"+g)n where h denotes
the index such that u*p = 1, then x* € OS(P) and U(LD) = b(Q) = W(P) . 0
4. Example

The sufficient conditions given above are useful in practice and easy to check. Consider

the following makespan problem (Pa,B) with 2 machines and 2 jobs (see Escudero 1} for a full
description of the problem and also {7,8]):

min max {4x1+ 3x3 + 4xs5 + 4X7, 4x2 + 2x4 +2xg +3xg} (Fx +g)
s.t.

X1 +Xxo=1 X3 +XxXq4=1 (Ax <b)

X1 <Xs X3 <x9

X2 S Xg X4 < Xg
4x¢ + 3X3 + 4x5 + 4x7 SO (Cx <d)
4x2 + 2x4 + 2Xg + 3xg < P
xje {0,1} i=1,.8

The first (resp. second) machine is available o (resp B) units of time, x5 (resp. xg)
represents the assignment of job type 1 to machine 1 (resp. machine 2) with a potential setup
time of 4 (resp. 2) units of time. Similarly, x7 (resp. xg) represents the assignment of job type 2
to machine 1 (resp . machine 2) with a potentiel setup time of 4 units (resp. 3). Finally x1 {resp.
x2) correspond to the assignment of job 1 to machine 1 (resp. machine 2) with processing times
of 4 on both machines. Similary, x3 and x4 play similar roles for job 2, with processing times ot 3
and 2 units respectively.

For problem (P76) the sufficient conditions of theorem 5 (iii) are satisfied by u*= (1,0),
v'= (4,4,3,4,4,4,4,4) and x*= y* =(0,1,1,0,0,1,1,0). One has u(LD(u*,v"}))=7, thus B(P) = 1(Q) =
u(L.D) = 7 and x* € OS(P).

it is important to notice that alone condition x*=y* of theorem 5 is not sufficient for
optimality as in (Guignard, Kim [4,5,6]). Indeed consider (P15, 11); it is easy to show that :

. U(P)= 7 and OS(P) ={(0,1,1,0,0,1,1,0)}

. U(Q) = v(Qu*)) = % withy* = (% , % ) which is not an extreme point of U.
. U(LD) = u(LD("*v")) = v(Q) with v* = u'F = ;—(12,16,9.8,12.8,12,12); x! =

(1,0,0,1,1,0,0,1) and x2 = (0,1,0,1,0,1,0,1) are such that (x' x') and (x2,x2) belong to
OS(LD(u* v*)), but U(LD) < L(P).
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5. Concluding remarks

We have presented various relaxations and decompositions wich can be applied to
minmax integer programming problems. As an alternative to subgradient optimization, we have
also extend column generation to solve Lagrangean decomposition duals ([2]). This technique
has been applied to the minimization af excess capacity in loading problems and makespan in
flexible manufacturing systems. All the proofs are contained in {[2)).

References

{1] L.F. Escudero (1987) "A mathematical formulation of a hierarchical approach for
production planning in FMS", in A. Kusiak, ed. Modern Production Management Systems, North
Holland , 231-245.

[2] A Fréville, M. Guignard (1990) “Relaxations for minimax problems", Research report,
University of Valenciennes, France.

{3] A. M. Geofirion (1974) "Lagrangean relaxation for integer programming”, Mathematical
Programming Study 2, 82-114,

[4] M. Guignard (1984) "Lagrangean decomposition: an improvement over Lagrangean and
surrogate duals *, Departement. of Statistics, University of Pennsylvania, USA.

[5) M. Guignard, S.Kim (1987a) “Lagrangean decomposition for integer programming : theory
and applications”, RAIRO 21,307-324.

[6] M. Guignard, S.Kim (1987b) “"Lagrangean decomposition: a model yielding stonger
Lagrangean bounds”, Mathematical Programming 32, 215-228.

[7] M. Guignard (1989) "Solving makespan minimization problems with Lagrangean
decomposition ", Departement of Decision Sciences, University of Pennsylvania, USA

[8) M. Guignard; Hochang Lee (1989) “A hybrid bounding procedure for the workload
allocation problem on parallel unrelated machines with setups ",Department of Decision
Sciences, University of Pennsylvania, USA




COMBINATORIAL ACCELERATION OF THE BRANCH AND BOUND
SEARCH FOR PROCESS NETWORK SYNTHESIS

F. Friedler!»2 and L. T. Fan?

lDt:partment of Systems Engineering, Research Institute of Chemical Engineering
Hungarian Academy of Sciences, Veszprém, Pf.: 125, H-8201, Hungary
Phone: (36)80-24-483, Fax: (36)80-28-275, E-mail: h727fri@ella.hu

2Department of Chemical Engineering, Kansas State University
Manbhattan, Kansas 66506, U.S.A.

INTRODUCTION

The design of any process system for producing desired products from available raw
materials almost always involves process network synthesis (PNS). A process system is a
network of operating units, each of which transforms a specified number of input materials
with known quality into a specified number of output materials by altering their physical,
chemical, or biological properties. The importance of PNS arises from the fact that essentially
every product of the chemical and allied industries is manufactured by such a network;
moreover, the profitability of the same product from different networks may vary widely.

The MINLP model of PNS contains a large number of binary variables associated with
the operating units. This renders the model difficult to solve by any available method without
exploiting the specific features of process structures and the model. Although its complexity is
exponential, the branch and bound method has the advantages of being independent of an
initial structure; guaranteeing the optimality provided that the bounding algorithm exists; and
being capable of incorporating combinatorial algorithms. Nevertheless, the general branch and
bound method is inefficient in solving the MINLP model of PNS because a large number of
NLP subproblems is generated and the number of free variables is unnecessarily large for each
subproblem, i.e., many of such free variables are associated with operating units that need be
excluded from any feasible solution of this subproblem.

Combinatorial analysis of the MINLP model of PNS and that of feasible process
structures yield mathematical tools for exploiting the unique characteristics of PNS. These
tools can accelerate the branch and bound search for the optimal solution by minimizing the
number of subproblems to be solved and by reducing the size of an individual subproblem
through exclusion of the binary variables and constraints of those operating units that must not
be included in any feasible solution of the subproblem. This algorithm has been validated on
the basis of combinatorial analysis of process structures and has been applied for solving
industrial instances of PNS.
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STRUCTURE REPRESENTATION IN PNS

The simple directed graph is effective in representing structures of general network
problems [1]; however, it is unsuitable for PNS as demonstrated by simple examples [2].
Structure representation with enhanced sophistication is required for PNS.

Let M be a given set of objects, usually material species or materials that can be
converted or transformed by the process under consideration. Transformation between two
subsets of M occurs in an operating unit. It is necessary to link this operating unit to other
operating units through the elements of these two subsets of M. The resuitant structure can be
described by a directed bipartite graph, termed a process graph or P-graph in short, which
alleviates the difficulty encountered in representing a process structure by a simple directed
graph.

Definition 1. Let M be a finite set, and let set O € p(M) X pM) with M N O = O,
where p(M) denotes the power set of M. Pair (M, O) is defined to be a process graph or
P-graph; the set of vertices of this graph is M U O, and the set of arcs is A = AjU Ay with
Al ={x,Y)| Y=(a,B8) €EO0andx € a} and Ay = {(Y,x)| Y = («, B) € O and x
€ B}. P-graph (M', O') is defined to be a subgraph of M, 0), i.e., M', 0") € M,
0), f M' € M and O' S O. Let (My, Oy) and (My, O9) be two subgraphs of (M,
0). The union of (My, Oy) and (M>, O,) is defined by P-graph (M; U My, Oy U
O7) denoted by (M, O1) U (M3, O7); obviously, this union is a subgraph of (M,
0). If (a, B) is an element of O, then, set « is the input-set of («, B), while set 8 is its
output-set. The set of arcs incident into, out of, and to vertex x are denoted by w™(x), w¥(x),
and w(x), respectively. The indegree, d”, and the outdegree, d+, of vertex x are defined by
d'x) = |w(x)| and d¥(x) = | w¥(x)| . The degree of vertex x is defined by d(x) =
d*(x) + d*(x). Since sets w(x) and w¥(x) do not intersect for a P-graph, we have d(x) =

| w(x) | .

MINLP MODEL OF PNS

Let us consider a PNS problem in which the set of desired products is denoted by P; the
set of raw materials, by R; and the set of available operating units, by O = {0y, 07, . . .,
Op}. Moreover, let M be the set of materials belonging to these units, and assume that
PNR=J,PS M,RE M and M N O = J. Then, P-graph (M, O) contains the
interconnections among units of O. Furthermore, each feasible solution of this problem
corresponds to a subgraph of (M, O). For any 1<j<n, let yj =1 if 0j is contained in this
subgraph and yj =0 otherwise. Thus, this subgraph is determined by the vector (y{, ¥2, - . .
» Yp)- Let A = {aj, a3, . . ., a;} be the set of arcs and continuous variable xp (k = 1, 2,
.. ., I) be assigned to arc ay. The function, for which ¢ ({a;,, 3;,, . .., 3} }) = (xil, Xigs - -
., Xj,) holds for any subset {ai], s+ + s a; } of A, is denoted by ¢. léinally, continuous
variable Z is assigned to operating unit 0 forj=1,2,...,n

The constraints on and the cost of operating unit 0; can be expressed, respectively, by

gj(yj, ¢(w(oj)), zj) <0, i=012,...,n

f:’(yj, ¢(w(oj)), 2j), i=1L2,...,n
where for a fixed value of ¥j» both fJ and gj are nonlinear, differentiable functions on the
practically interesting domain forj = 1,2, ..., n.
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Similarly, the constraint on and the cost function of vertex m; can be given, respectively,
as follows:

gi'(¢(wmy)) < 0, i=12...,1
and

fi' (¢(w(my))), _i=142,...,1
In practice, g' and f' are usually linear. The cost function of the PNS problem is the sum of
the costs of the materials and operating tnits involved.

COMBINATORIAL STRUCTURE OF PNS

In general, no arbitrary vector (yy, y2, - - ., ¥p) /i € {0, 1}, i=1,2,. . . ,n)can
define a feasible process structure. The feasible process structures have some common
combinatorial properties (2] that have been expressed implicitly in the MINLP model. Since
each feasible process structure must have these combinatorial properties, the set of subgraphs
of (M, O), considered in solving the model, can be reduced to the set of combinatorially
feasible process structures or solution-structures in short.

Definition 2. Subgraph (M', O') of P-graph (M, O) is defined to be a solution-structure
of PNS given by set P of products and set R of raw materials if

S1)P & M, i.e., every final product is represented in P-graph (M’, O’);

S2)vyx € M',d(x) = 0iff x € R, i.e., a vertex from M’ has no input if and only if it
represents a raw material;

(S3) vu € O, 3 path [u, v] in M', O'), where v € P, i.e., every vertex from O' has at
least one path leading to a vertex representing a final product; and

S4)vx €M, 3(a, B) € O such that x € (a U B), i.e., any vertex from M’ must be
an input to or output from at least one vertex from Q'.

The set of solution-structures is denoted by S(P, R, Q); its important properties are
expressed by the following theorem, lemma, and corollaries.

Theorem 1. S(P, R, O) is closed under union.

Lemma. If(M', O') € S(P, R, O), then, M' = U (@uf).
(a,B)EO’

The direct consequence of this lemma is the following corollary.

Corollary 1. Let M’, O') € S(P, R, O); then, (M', Q') is uniquely determined if set O’
is given.

The maximal structure, defined below, plays an essential role in PNS.

Definition 3. Let us assume that S(P, R, O) # <. The union of all solution-structures
of PNS is defined to be its maximal structure; it will be denoted by u(P, R, 0), i.e.,

u®, R, 0) = U 0.
sES(P,R,0)

Since the set of solution-structures is finite and closed under union, the maximal structure
also is a solution-structure; this leads to the following corollary.

Corollary 2. u(P, R, O) € S(P, R, O).

Naturally, the optimal solution need not be concerned with any operating unit not
included in the maximal structure. Since any optimal solution is a solution-structure, the
MINLP model of PNS can be based on the maximal structure. For this reason, let us suppose
that S(P, R, O) # O, and also let us denote the maximal structure, u(P, R, O), by M', O").
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A polynomial algorithm is available for the generation of the maximal structure [3].

BUILDING BLOCKS OF THE ACCELERATED BRANCH AND BOUND METHOD
Essentially, the branch and bound method yields the optimal solution of a mathematical
programming problem by generating and solving some simplified subproblems. Suppose that
we have three sets Ig, I}, and I¢ (any pafr of them is disjunct) and that Iy U I U I¢= {1, 2,
. ., n}. These sets define one subproblem of the branch and bound method. In this
subproblem, Ly and Iy are the sets of indices of binary variables whose values are zero and
one, respectively, and I¢ is the set of indices for the free variables of this subproblem, i.e., the
value of any of these variables is supposed to be in ciosed interval (0,1].

S lem Generation

The structures of some, or often most, subproblems, defined by Iy, 1y, and I¢, are not
substructures of any solution-structure; these subproblems are said to be structurally infeasible,
as will be delineated later. Only structurally feasible subproblems should be generated.

Definition 4. Let u(P, R, O) = (M', O'). Then, P-graph (m*, o*) is a
subsolution-structure of PNS given by set P of products and set R of raw materials, if

(8S1) forx € m*,d(x) =0, ifx € R;

(8S2) o* < O';

(S83) vu € O, 3 path [u, v] in (M', O'), where v € P;

(SS4) vx € M', 3 (a, B) € O' such that x € (o U B).

Let S*(P, R, O) denote the set of subsolution-structures; note that (&, &J) € S*(P,
R, 0). If (m*, 0*) € S*(P, R, 0), then, (m*, 0*) € u(P, R, O).

Theorem 2. S(P, R, O) € S*(P, R, O).

For a given subsolution-structure, o* = (m*, 0*) (€ S*(P, R, 0)), let us define set r*
such that

r*={x| x € m*\ R U P)and d(x) = 0}.

Theorem 3. Let 0* € S*(P, R, O); then, 0* € S(P, R, 0), if and only if r* = &.

The accelerated branch and bound algorithm is based on algorithm SSG, given in Figure
1. Algorithm SSG generates each solution-structures exactly once and generates
solution-structures only. It does so by determining the decision-mappings of some
subsolution-structures (see the APPENDIX). These subsolution-structures define structurally
feasible subproblems of the MINLP model of PNS. The validity of algorithm SSG has been
proved by resorting to the following theorems.

Theorem 4. Decision-mapping 8[m] of algorithm SSG is consistent, and it is a
subsolution-structure.

Theorem S§. Algorithm SSG generates all solution-structures whose decision-mappings
are the extensions of d{m).

Theorem 6. O is a decision-mapping of algorithm SSG.

Theorem 7. No decision-mapping is generated more than once by algorithm SSG.

Theorem 8. Decision-mapping 8[m] of algorithm SSG is a solution-structure if and
only if set p' of algorithm SSG is empty.
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Input: P, R, M, o(x) (xEM) ;

Comment: PEM, REM, 0SS p(M)Xp(M), PNR=T,
o(x)={(a,B) | (a,8)EO & XEB}, o(x)=T & xER ;

Output: all solution-structures of the PNS problem ;

Global variables: R, o(x) (xEM) ;

begin

if P=¢ then stop;
SSG(P, O, );

end

procedure SSG( p, m, é[m) ) :
in
if p = O then begin write 6[m] ; return end
let x €Ep;
C:= p (0o(x)) \ {@};
Forallc € C do
begin
ifvhyEm, cNE@) \&y)=3 & (ox)\ c)Néy)=S
then

begin
8[mU {x}] := 8{m]U {(x,c)} ;
SSG(pU( U a )\ RUmMU{x}), mU{x}, mU{x}]);
(a,B)Ec
end
end
return
end

Figure 1. Algorithm SSG

Theorem 9. Only one decision-mapping of algorithm SSG may belong to a
solution-structure.

Vv 10N- 1 {

Let us define a2 mapping, denoted by ind, that yields the set of indexes for the elements of
a subset of O. Moreover, let 6{m] be a decision-mapping of subsolution-structure o*, and also
let S’ be the following set;

$'={o | ¢ € S(P, R, O) and the decision-mapping of ¢ is an extension of {m]}.
If this set is not empty, then, §[m] and the subproblem determined by 6{m] are defined to be
structurally feasible.

Theorem 10. Suppose that 6[m] is a structurally feasible subsolution-structure and that
structure ¢ is defined by 0 = '%S'al' Then, all solution-structures whose decision-mapping

o

are the extensions of 5[m) are a substructure of . Conversely, ¢ is minimal with this property,
i.e., for any structure p such that o  p, there exists solution-structure a'such that o' Z p.
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Obviously, decision-mapping 6{m] can be extended to decision-mapping 5[M*], a
decision-mapping of S’. Then, sets I and I of a subproblem defined by é{m] are
Iy = ind( LEJ 6(x)) and
xcm

Ig = ind( U 5'(x)),
xEM
where 6'[M] = 6[M*] \ é[m).

ACCELERATED BRANCH AND BOUND ALGORITHM

Based on the building blocks mentioned above, an accelerated branch and bound
algorithm, algorithom ABB has been developed for solving the MINLP model of a PNS
problem (see Figure 2). This algorithm yields the optimal solution provided that the bounding

Input: P, R, M, o(x) (xEM) ;

Comment: PEM, REM, 0 p(M)Xp(M), PANR=O,
o(x)={(c,B) | (a,8)EO0 & xEB}, 0(x)=T & xER;

Output: optimal solution of the PNS problem ;

Global variables: R, o(x) (x€M), U, currentbest ;

begin

U := oo ; currentbest := anything ;

if P=C then stop;

ABB(P, &, D );if U < o then print currentbest else print 'there is no solution' ;
end

procedure ABB( p, m, 6[m] ) :
begin
let x €p; C:= p(ox)\ {A};
Forall c € C do
begin
ifY yEm, cNé(y)=F & (o(x) \ c)Né(y)=D
then begin
6[mU {x}] := 8[m]U {(x, ¢)} ;
P:=pU( U o« )\RUMU{ED; m' :=mU {x};
(a,8)Ec
ifp' = O
then begin
U := min( U, BOUND( m’, &, 6{m'] ) ) ; update currentbest ;
end
else if RSG(p', m', 6[m'], M, §[m'UM])
then if U 2 BOUND(m’', M, 6[m'UM] ) then ABB( p',m’, §[m’] ) ;
end
end
return
end

Figure 2. Algorithm ABB
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algorithm exists, by generating structurally feasible subproblems only. Moreover, the size of
each subproblem is reduced by excluding the binary variables and constraints of those
operating units that can not be included in any feasible solution of the subproblem (see Figure
3 for procedure RSG).

proeedlfre RSG(p’, m', 8[m'], M, é[m'UM] ) :

P:=P,
M:=0;
while p is not empty do
begin
x€p;
M:= MU{x};
8x):=o(x)\( U 5(y);
yEm'
if 8(x) = & then return false ;
P = pU( U a)\ RUmM'UM);
(a,B) € 5(x)
end
return true
end
Figure 3. Procedure RSG
Example

The accelerated branch and bound algorithm has generated 6325 subproblems for an

industrial PNS problem involving 35 operating units in the worst case [2]. This is about one
millionth of the number of the subproblems generated by the general branch and bound
algorithm in the worst case. The reduction in the number of free variables of each subproblem
of the accelerated branch and bound algorithm is also essential.
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APPENDIX
Decision Mappings

To generate a certain class of subgraphs of a graph, e.g., a set of feasible structures, a

special technique, decision-mapping has been developed to organize the system of decisions.
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Decision-mapping is a special tool to render our decisions consistent and complete in dealing
with complex decision-problems such as PNS.

Let us suppose that for finite sets M and O, O & p(M) X p(M) holds; moreover, for
x € M, let us define set o(x) by o(x) = {(a, 8) | (o, 8) € O and x € B}; naturally, pair
M, O) is a P-graph. -

Definition 5. Let us suppose that sets M and O satisfy O S (M) X p(M) and set m
be a subset of M. Moreover, let 8(x) be a subset of o(x), for x € m. Then,
8[m} = {(x, 6(x)) | x € m} is defined to be a decision-mapping on its domain m.

Definition 6. Decision-mapping 6y{m] is defined to be the restriction of
decision-mapping 53{m3] to my, if my € mj and &;[my] = {(x, 6p(x)) | x € m}.

Definition 7. The complement of decision-mapping 6[m] is defined by
6*m) = {(x,y) | x € mand y = o(x) \ &(x)}. Thus, 6*(x) = o(x) \ 6(x) for x € m.

Definition 8. Decision-mapping 8[m] is consistent if | m | <1 or (5(x) N &(y)) Y
(6%(x) N 6*(y)) = o(x) N o(y) for any x, y € m.

Theorem 11. Decision-mapping §[m} with | m | 21 is consistent if and only if 6(x) N
S*y)= QD forallx,y € m.

Theorem 12. Decision-mapping 81[my] is consistent if §j(my] € J79[my] and
87{my] is a consistent decision-mapping.

Definition 9. For consistent decision-mapping 6[mj, let 0 = U §(x), m =
x€Em

U (@UB)Um,and é'[m] = {(x,y) | xEmandy = {(a, B) | (a, B) € 0 and x
(a,B)E0
€ B}}; then, 6'[m] is defined to be the closure of §{m], and 8[m] is said to be closed if 5[m]
= §'[m]. The closure of a consistent decision-mapping is closed.

Theorem 13. Let 6'[m] be the closure of consistent decision-mapping 6[m]}; then,
8(x) = 8'(x) for all x € m, i.e. §[m] is the restriction of 6'[m] to m.

Corollary 3. If §'{m] is the closure of consistent decision-mapping 6{m], then 6{m]
c §'[m].

Theorem 14. The closure of a consistent decision-mapping is consistent.

Definition 10. Two consistent decision-mappings are equivalent if they have common
closure. '

Naturally, a consistent decision-mapping is equivalent to its closure, and the relation
"equivalent” is an equivalence relation.

Definition 11. m' is said to be an active domain of decision mapping é[m] if m'S m,

U x) = U 6x)and U 8%x) = U *x).
x€Em’ x€Em xEm' x€Em

Note that m is always an active domain of decision-mapping 6[m], and a
decision-mapping can have multiple active domains.

Theorem 15. Let 3[m)] be a consistent decision-mapping; then, it is determined on its
whole domain, m, if it is given only on one of its active domains.

Theorem 16. If a decision-mapping is consistent on one of its active domains, then,
it is consistent.

Definition 12. Let 61[m{] and §7[mj] be consistent decision-mappings with their
closures, 51'(my) and &;'[mjy), respectively. Then, §{{m;] is defined to be an extension of
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0;(my] if

@) mp2my,m2m,,

(i)  d7[my)] is the restriction of §;[m;] to my, i.e., §;(x) = 85(x) for x € my, and

(i) 8)'(x) 2 8'(x) for x € my \ my.

A consistent decision-mappings is an extension of &. That §;(m;] is an extension of
65[my] is denoted by &y(my] > 85(my].

Theorem 17. §'[m]) > 4[m] where 6'[m] is the closure of consistent
decision-mapping 6[m].

Theorem 18. The relation extension is a partial order of the set of consistent
decision-mappings.

Let P-graph (m, o) be a subgraph of P-graph (M, O)

Definition 13. m' is an active set of P-graph (m, 0), if m' S mand 8 N m' # J for
any (a, 8) € o.

Definition 14. Let m' be an active set of P-graph (m, 0); then, 8[m’] is defined to be
a decision-mapping of P-graph (m, 0) if 8im'} = {(x,y) | x €E m'and y = {(a, B) | (o, B)
€ oand x € B}}, i.e., 8(x) = {(ar, B) | (,B) €E 0and x € B} forx € m'.

Theorem 19. The decision-mappings of a P-graph are consistent.

Theorem 20. Decision-mapping 6[m] of P-graph (m, 0) is closed if set m is active.

Theorem 21. An active set of P-graph (m, o) is an active domain of its
decision-mapping &[m] if set m is active.

Theorem 22. The decision-mappings of a P-graph are equivalent provided that this
P-graph has an active set.

Theorem 23. Let 6[m’'] be a consistent decision-mapping, o = eU .G(x) and

xcm

m= U (aUB). Then, (m, o) is a P-graph, m' is an active set of P-graph (m, o), and é[m']
(a,B)€0

is a decision-mapping of P-graph (m, o).
Definition 15. The P-graph of consistent decision-mapping 5[m'] is defined to be (m, o),

whereo = U é(x)andm= U (axVU B).
XEm (a,8)Ec
Theorem 24. An active domain of a consistent decision-mapping is an active set of its
P-graph.

Theorem 25. Equivalent consistent decision-mappings have the same P-graph.
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Abstract: In the paper, a special class of linear programs with an additional re-
verse convex constraint is treated. The problems to be considered have the special
property that the feasible set is the union of some faces of the polyhedron deter-
mined by the linear constraints. Several nonconvex programming problems can
be written into this form, e.g. the minimum linear complementarity problem, the
linear disjunctive programming problem, the linear bilevel programming problem,
the problem of linear optimization over the efficient set, etc. We propose a finite
method based on convexity and disjunctive cuts for solving such problems.

1. Introduction

The problems to be considered are given in the form

min ¢!

z s.t. 2 € P, g(z) =0, (1.1)
where P C R™ is a nonempty polyhedron, ¢ is an n-vector and T denotes the
transposition. In addition, ¢ : G — R is a concave function such that G C R" is
a convex set, P C G and

g(z) >0 forevery r € P.
Because of the last property, (1.1) is equivalent to
min ¢’z st. z € P, g(z) <0, (1.2)

which is the form of a linear program with an additional reverse convex con-
straint. Several methods have been published for solving linear programs with
an additional reverse convex constraint, see e.g. [6,8] and the references therein.
However, instead of applying one of these methods directly, we propose a modi-
fication of the algorithm presented in (6] for solving (1.2). This is motivated by
the property that the possibly nonempty feasible set of (1.1) is the union of some
faces of P. Consequently, if (1.1) has finite optimal value, there exists a vertex
of P among the optimal solutions. For a linear program with a general reverse
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convex constraint, we can state only that an optimal solution can be attained on
an edge of P.

In Section 2, we propose a finite cutting plane method for solving (1.1). In Sec-
tions 3 through 6, we show that a wide range of nonconvex programming problems
is transformable into the form_of (1.1).

2. A finite cutting plane method

We assume that the polyhedron P is given by P = {z € R® | Az = b, z > 0},
where A is an m X n matrix and b is an m-vector. Let X denote the feasible set

of (1.1).
Proposition 2.1. If X # 0, then X is the union of some faces of P.

Proposition 2.2. If X # 0, then exactly one of the following cases holds:

(i) Problem (1.1) has a finite optimal value and there exists an extreme point
of P among the optimal solutions;

(ii) The objective function cTz is unbounded below over X and there exists an
edge F of P such that FF C X and ¢Tz is unbounded below over F.

Consider first the case when c”z is bounded below over P, e.g. P is bounded.
Let V(P) denote the set of the extreme points of P. Consider the problem

min ¢’z s.t. z € V(P), g(z) = 0. (2.1)

By Proposition 2.2, problems (1.1) and (2.1) have simultaneously feasible solution,
and any optimal solution of (2.1) is optimal for (1.1) as well. If we are interested
only in finding the optimal value and an optimal solution of (1.1), it is enough to
solve (2.1). We shall deal with (2.1) in the seuel.

Any z° € V(P) is also a basic feasible solution of
Az =b,z2>0. (2.2)

For a feasible basis B of (2.2), let the simplex tabular form of (2.2) be determined
by
z; + Z @ijz; = ay, 1 € Ip, (2.3)
j€ls
where Ig and Ig denote the index sets of the basic and nonbasic variables, respec-
tively.

Consider an z° € V(P) such that g(z°) > 0. Then, z° is not a feasible solution
of (1.1). We construct a convexity cut to exclude z° from the further search. Let
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B be a feasible basis belonging to z°. Using the coefficients of the simplex tabular
form (2.3) determined by B, construct the vectors 27 € R", j € Ig, defined by

1 for k = 3,
z,{: —ay; fork € Ip, k=1,...,n; j € Ip. (2.4)
0 otherwise,

For every j € Ig, compute
Aj =sup {A|Z+ A2 € G, g(z + A2?) >0} (2.5)
Clearly, A; > 0 for every j € Ip.

Proposition 2.3. Assume that A; > 0 for every j € Ig. Definet € R" by

1/X; forj € Ig and ), < oo,
tJ'= k=1,...,n. (26)
0 otherwise,
Then
tT2° <1 and g(z) >0 forevery z€e PN{z € R |tTz < 1}. (2.7)

Proposition 2.4. If the vertex z° is nondegenerate, then A\; > 0 for every j € Ip.
Proposition 2.5. If z° is an inner point of G, then )A; > 0 for every j € Ip.

Assume that we have an z° € V(P) such that g(z%) > 0 and A; > 0 for every

j € Ig. Then, the convexity cut
tTz >1 (2.8)

defined by (2.6) cuts off z° but leaves the possible points of X. If we have A\, =0
for a j € Ig, then a convexity cut similar to (2.8) can be also generated at the
expense of some extra efforts including the determination of the edges emanating
from z° and solving a linear program [8].

In the latter case, an alternative and faster way of excluding z° from the further
search is the generation of a disjunctive cut. We construct a cut of form (2.8) such
that

tTz% <1 and tTz > 1 for every z € V(P)\ {z°}. (2.9)

Let Iy = {i | % > 0}. Then for any z € V(P)\ {z°), there exists at least

one 1 € I, such that z; = 0. The disjunctive cut is constructed based upon this
disjunction.
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Proposition 2.6. Consider a simplex tabular form (2.3) belonging to z° and let

max{a;;/ai |t € I+} for j € Ip,
tj= k=1,...,n. (210)

0 _ otherwise,

Then the cut (2.8) defined by (2.10) fulfils (2.9).

Assume now that we have found an z° € V(P) such that g(z°) = 0. Then z° is
feasible to (1.1) and (2.1). Let N(z°) denote the set of those vertices of P which
are adjacent to z°. Examine whether there exists an r! € V(P) such that

z' € N(z°), g(z)) =0 and cTz! <740 (2.11)

If we find such an z!, then we replace z° by z! and repeat the matter above. In
this way, we step on feasible solutions of (2.1) meanwhile improving the objective
function value.

After a finite number of improving steps, we obtain an z° feasible to (2.1) such
that we cannot find an z! € V(P) fulfilling (2.11). It may also occur that there
exists such an z! but z° is a degenerate vertex and we would like to spare the time
needed for determining N(z°). We add the objective function cut

Tz <7, (2.12)
where v = ¢Tz%, in order to exclude the points with objective function value
greater than 5. However, since z° fulfils (2.12), we also generate a disjunctive cut
presented above to exclude z° from the further search.

After adding one or two of the cuts presented above, we proceed with a new
z% € V(P), if any, such that 2° fulfils the cut constraints generated earlier. At
a step of the algorithm, let @ C R" be the set of the points feasible to the cuts.
Of course, @ is a polyhedron. The subproblem to be solved is now to find a
point of @ N V(P) or to prove QN V(P) = @. This is a well-known problem of
nonconvex programming. It was treated first by Majthay and Whinston (10] in a
concave minimization context. They proposed a finite cutting plane method using
a parametric programming technique. Their method was improved and extended
by Fil6p [5] using a disjunctive programming technique. We suggest applying the
finite method of [5] to find a point of @ N V(P), if any.

The cutting plane method proposed for solving (2.1) is summarized below.

Algorithm 2.1:
Step 0: Set v —~ o0 and Q — R™.
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Step 1: If Q N V(P) = 0, stop. Otherwise, find an z° € Q N V(P). If g(z%) = 0,
go to Step 2. Otherwise, go to Step 3.

Step 2: If we can find an z' fulfilling (2.11), then set z° «— z' and repeat Step
2. Otherwise, set v «— cTz%, z* «— z°, generate the disjunctive cut (2.8)
defined by (2.10) and set-Q — QN {z € R* | tTz > 1,cTz < 7}. Go to

Step 1.

Step §: For every j € Ip determine A, by (2.5). If A\; > 0 for every j € Ig,
generate the convexity cut (2.8) defined by (2.6). Otherwise, generate the
disjunctive cut (2.8) defined by (2.10). Set Q — QN {z € R" | tTz > 1}
and go to Step 1.

Proposition 2.7. Algorithm 2.1 solves (2.1) in finite steps. If v = oo, then (2.1)
has not feasible solution. Otherwise, v is the optimal value and z* is an optimal
solution of (2.1).

We turn now to the case when ¢fr is unbounded below over P. We have to

check whether ¢7z is unbounded below over X as well. If (2.1) has not feasible
solution, we are done since X' = §. Otherwise, let v be the optimal value of (2.1)
and choose a 3 > v arbitrarily. Let P= PN {z e R" | Tz = 7).

T

Proposition 2.8. The objective function ¢* z is unbounded below over X if and

only if
min {g(z) |z € P} = 0. (2.13)

It is clear that (2.13) holds if and only if there exists a vertex z of P such that
g(z) = 0. Similarly to Algorithm 2.1, a finite algorithm based on convexity and
disjunctive cuts can be proposed to verify (2.13).

3. The minimum linear complementarity problem

Consider the minimum linear complementarity problem given in the form
min ¢’z st. Az =b, >0, Z;Tap; =0 for :=1,...,R, (3.1)

where the sizes of matrix A and vectors z, b and ¢ are the same as in the previous
sections. We assume that 2 < n. Judice and Mitra (9] showed that several well-
known mathematical programming problems can be transformed into (3.1). See
(9] for a list of such problems and the details of the reformulations.

For an z € R", let
7
g(z) = Zmin{z;,x,—,+,-}.
i=1
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Then g : R® — R is a concave function. Let P={z € R" | Az =b,z > 0}. Itis
easy to see that (3.1) is equivalent to (1.1).

We mention that the reformulation of some mathematical programming prob-
lems into (3.1) may result unrestricted variables z;, j = 2i+1,...,n. The method
presented in Section 2 can be:easily modified for such problems. Another way is
to write these unrestricted variables as differences of nonnegative variables.

4. The linear disjunctive programming problem

A mathematical programming problem is called linear disjunctive programming
problem if the feasible set can be represented by a finite number of intersection
and union operations on a finite number of closed halfspaces. In addition, a linear
function is to be optimized over the feasible set. It can be shown {7] that any linear
disjunctive program can be transcribed into an equivalent problem of following
form:

min ¢Tz st. Az=b, z>0, H:r,-=0for 1=1,...,k, (4.1)
Jel
where I; € {1,...n} for i = 1,...,k. Let the concave function ¢ : R® — R be
defined by

k
g(z) = )_min{z; | j € L}.
=1

Then (4.1) is equivalent to (1.1). It is also easy to see that (3.1) is a special case
of (4.1) withk=nand I; = {i,a+i} fort =1,... k.

5. The linear bilevel programming problem

Consider the linear bilevel programming problem {1,4] stated as follows:

T
max ¢! y+ cmTz, where z solves (5.1)
v
T T
max dV y +d?° ; (5.2)
s.t. AWMy 4+ APz = p, (5.3)
y>0, 2>0, (5.4)

where ¢}, d(!) and y are n,-vectors, c(?), d(?) and z are n-vectors, b is an m-
vector, A?) is an m x n; matrix and A® is an m x n, matrix. Let

(1) d
y ¢
= = = = (1) 4)
z [Z], c [cm]’ d [d(”] and A [A A ]
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Let P = {z € R"*" | Ar = b,z > 0}. We assume that P # § and d”z is
bounded above over P. For an r € R*'*"? let

nT T
g(z) = —d'?" z + max{d?P 7| APz = b~ AWy, 7 >0}, (5.5)

where g(z) = —o0 if the maximization problem in (5.5) has not feasible solution.

Let G = {zx € R™*"?| g(z) > —00}. It can be shown that G is convex, P C G,
g is a piecewise linear, continuous and concave function over G and g(z) > 0 for
every z € P. In addition, (5.1)-(5.4) is equivalent to (1.1) with the modification
that ¢TIz is to be maximized now.

6. Linear optimization over the efficient set

Consider the multiple objective linear program
‘max’ Cz st. z € P, (6.1)

where C is a k x n matrix and P C R" is nonempty polyhedron. By definition [11],
a point z° € P is an efficient solution of (6.1) if and only if there exists no z € P
such that Cz > Cz° and Cr # Cz°. Let E(P) denote the set of the efficient
solutions. Consider the problem

min ¢’z st. z € E(P), (6.2)

where ¢ is an n-vector. Problem (6.2) has several applications in multiple objective
programming, see {2,3,11] and the references therein.

For an £ € R", let g(z) be defined by
g(z) = max eTC(y—.t) st. Cy>Cz,y€ P, (6.3)

where g(z) = —o0 if (6.3) has not feasible solution and g(z) = oo if the objective
function is unbounded above over the nonempty feasible set of (6.3). In (6.3), € is
the k-vector whose every component is equal to 1.

Let G = {z € R" | g(z) > —o0}. Clearly P C G. It can be shown that
E(P) # 0 if and only if g(z) is finite for every z € G. Assume that E(P) # @.

Then ¢ is a nonnegative, piecewise linear, continuous and concave function over
G. In addition, problem (6.2) is equivalent to (1.1).
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EXTENDED ABSTRACT

We consider here the following stochastic programming problem:
minimize  Eof(x, w) (1)
subjectto  p(x) <0, x€X

and, more specifically, stochastic linear program with recourse

([WETS66], [BIRG86], [KALL76], [PREK73]) which is the problem (1) with
f(x,w) = cT(a))x +Q(x,w), p(x) = Ax-b and
Q(x, @)=min_{q" @)y | W(@)y=h(w)-T(@)x} 2)
where Eo denotes expectation with respect to w, an element of some
probability space (€2, B, P). We assume complete recourse, i.e. (2) always
has a solution.

Several methods for solving this problem which combine Dantzig-Wolfe
decomposition and statistical techniques were proposed recently
(HIGL91], [GAIV89]). The common feature of these methods is the
necessity to solve on each iteration linear or quadratic programming
problem which can be of considerable dimension.

In this paper we continue research in the direction of [GAIV89] and
propose a specific algorithm for solution of problem (1)-(2) which combines
stochastic quasigradient techniques with generalized linear programming.
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Let us explain in more details the algorithm we use to solve problem
(1)-(2). The generalized programming technique of Wolfe [DANTS80]
applied to (1) involves grid linearization of Q(x) = EwQ(x, @), that has been
shown to be convex [WETS66], and requires coordinated solution of a
master program and a Lagrangian subproblem defined as follows:

Master:
ko ko
min ¥ e'dj + ¥ O W;

j=1 j=1
s. t.
k x j
YA =D (3a)
j=1
k
: vk:le =1
j=1
A4j=0

Where th, v are the dual multipliers associated with the optimal solution
of (3a) and ¢ =Ewc(x, w).

Subproblem: Find xK*+1eR® such that 1<x** <u and
AETL 1 QuEtY < o (3b)
by partially optimizing the problem:
min o*x + Q(x) (3¢)
l=sx=u

where & = (c- AT th).

Hence, the essential features of the method consist of sending the prices
of the master to the subproblem that uses them to identify an improved
solution x** 1 depending on the previous points xl..x. In this way, a
sequence of points x0..xSis generated by the algorithm, which converges to
the solution of the problem (1) in a certain probabilistic sense.

The problem is that it is not possible to compute the values of Q(xj) and
its sugradnents exactly, except in some rare cases [NAZA86]. More generally,
Q(x’) can be approximated, for example by a sample procedures. What we
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dois to replace Q(xi) by an estimate, say Qk This substitution does not affect
the solution of the Master problem too much and for the Subproblem it is
not relevant if we do not optimize at each iteration, but we just look for a
point that satisfies relation (3b). This suggests to use statistical techniques
for the subgradient estimation in order to find the next improving point Xt
In particular, we use stochasic quasi-gradient procedures because of its
effectiveness in solving problems that has not to be pushed all the way to
optimality ((ERMO76], [GAIV8S)).

The fundamental steps of the proposed algorithm are illustred below.

STEP 1: (Initialize)
Choose a set of m grid points x',...x™ so that constraints
k .
Z (AW =b
j=1
k
i =1 4)
j=1
A4jz0

have a feasible solution. The simplest way to find them is to fix the values
of ! and start to solve the problem, of minimization of the objective function

ko
Y exAj, for example using the simplex algorithm. The basic solutions found

j=1
at the first m iterations may be a good choice for initial points.

Set kem.

STEP 2: (form estimates)

Define a subset Nx of integers, Nk C {1,...,.k}, which are the indices of the
set of grid points for which the estimates will be made, and the number s(k)

which controls the precision of estimates Q}‘ of Q(xi), in the following way:

- -s(m) =so
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~ define a sequence {kp}:=1 , with kp +1>kp, and

IF k =kp(for some kp) THEN Nk = {1,...k}
=s(k)=s(k-1) +1
ELSE Nk = {k}
s(k) = s(k-1)
Elements of kp define the iterations in which estimates have to be updated

at all of the available grid points. During all other iterations only the
estimation at the last point is performed.

~ Ok, with j € Ny, is updated by:
IFk=m THEN (V] < k)

50

Ok = E-IEZQ(x" ') where o' are indipendend observations of w.
i=1

s(k)
' 1 s(k)
ELSE Ok = (k)lglg(x'w) (1 (k))Qk 1 +—=Q (k) (x’w )
for j=k.

~ The estime at the last grid point to enter in the set is made as:

s(k)
ok = (I‘Rﬁ)‘ﬁ b+ (k)zg(x"w)

Such estimates have the property that [Q(x) -Ok ] = ek>0 a.s., as
s(k)—> o,

STEP 3: (solve Master)
~ Solve the master problem (3a) in order to obtain the value of the
dual multpliers, 7% and vk, and of the primal variables l}‘ .
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At this point the set Ak = {j: ).," >0} can be defined such that it is possible
toredefine the set Nk avoiding to update the estimates in those points having
j & Ax.

STEP 4: (Define a new grid point x**1)
~ Define 0*=(c-A"*) and consider the Lagrangian subploblem (3c).
~ Fix the number Sk of iterations and compute a sequence of points

using the stochastic quasi-gradient method as follows. Here ds are
the optimal dual variables associated with solution of the problem

(2) for x=xi.
& =ox- T (w%)ds
At =P - ps&k ) with
s=0,...,5k-1, xg =xf and *! =x£k

where Px is the projection operator over the set X of points belonging to
the feasible region.

STEP S: (Iterate)
k « k+ 1. Return to Step 2.

It is important to note that it has been possible to apply the generalized
linear programming to stochastic problem introducing two important
modifications, mentioned above, to the original decomposition method.
Firstly, it does not require exact values of the objective function (step 2). It
is only necessary to have estimates of the objective values at the grid points
with their precision gradually increasing. Secondly, it is not necessary to
minimize the Lagrangian subproblem at step 4, precisely, it is only necessary
that current point x* * ! regulary comes to the vicinity of such a solution.

The convergence of this algorithm to the set of optimal solution of
problem (1)-(2) with probability 1 follows from results contained in
[GAIVE9].
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Methods using the decomposition techniques have as common feature
the necessity to solve at each iteration a large scale linear problem. In order
to speed up the computational process we have paid much attention to
preprocessing of linear programming subproblems. In particular, we
implemented this algorithm by calling each time a processing routine and a
linear programming solver of the Optimization Subroutine Library (OSL)
[OSL92]. This allows to reduce greatly the problem dimentions and to take
advantage from similarity existing among problems arising at different

iterations._

Results of numerical experiments are reported in the full paper.
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This paper is concerned with the multistage stochastic linear programming problem,
written in deterministic equivalent form as

. Kl K, KT
min gTo + 3, PhCh, Tk + 2 PhaCiyTha tooct Y. PhrCipTir
k|=1 k’=K1+1 kT=K1'-|+1
s.t. AgZo =bg
By, zo + Ax, zi, =by, k1 =1,..., K
Bk,.‘t‘(k,) + Ak,.‘tk, = bkzv ke=Ki+1,...,K;

1)
Bk‘rza(kr) +Ak1‘$kf = bkr’ kT = KT—] + 1"'-’KT
2. 20, k=0,...,Kr.

Nested Benders decomposition (Birge [1], Gassmann {2]) splits this problem into Kr+1
pieces, one for each node in the decision/event tree. Each of these subproblems takes the
form

min cxZk 4+ 9%

s.t. Agzx = by — BiZq(k)
Fyzy <fi )
Grzr +19r < g
zx 2 0.

Here (Fi, fi) defines feasidility cuts, generated by the subproblems beyond k’s time stage
to ensure their feasibility, and (G, gs) are optimality cuts (1 is a column of ones) which
cut off non-optimal parts of k’s feasible region.
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As the number of stages increases, information has to travel through more and more
intermediate points to get from the first stage to the horizon and back, and one would
expect this process to be quite time-consuming.

The fast-start method described in this paper selects one scenario, that is, a single
path from the root of the event tree out to one of the leaf nodes and solves it as a regular
LP of reasonable size. If the scenario Tepresents an “average” set of realizations, then one
would expect the optimal decision variables for the stochastic problem to be “near” the
optimum values for the scenario problem.

In other, words, the scenario solution can be used as a reasonable starting point for the
other problems. The important distinction between this approach and scenario aggregation
and the progressive hedging algorithm of Rockafellar and Wets [4] is that in the present
approach a scenario is not an indivisible unit but is merely seen as a means to an end,
namely to find good starting bases for the node problems (2).

The main difficulty lies in disaggregating the scenario solution into the different stages.

Let’s look at the two-stage problem first. We can assume without loss of generality
that the first scenario consists of nodes 0 and 1, and we can separate the optimal solution
z* into five different components (an optimal solution must exist if the overall problem (1)
is to have a solution):

- zypg are first stage columns which are basic in first stage rows

- Irgg are first stage columns which are basic in second stage rows

- z4, are first stage columns which are nonbasic (and have value 0)
- z}p are basic second stage columns

- ]y are nonbasic second stage columns

It is clear from the problem structure that all the components of z] g, must be basic
in second stage rows. Moreover, if s = |S] is the number of components in the second
group, then we need s + 1 cuts to force the solution of the node problem (2) to agree with
the first stage decisions of the scenario problem. These cuts are derived from the second
stage problem

min ¢; I
s.t. Ajz1 =b — Bizo (3)
Iy Z 05

using z¢ = rg and the 2s perturbations z§ + éz;, for i € S and some step length . At
most one of the two directions will yield a cut to the node 0 problem, and the cuts can
be both optimality and feasibility cuts. The starting basis for solving (3) is in all cases
defined by z]g, augmented with slacks corresponding to the deleted variables zg¢.
However, the cuts in node 0 are only valid for the single scenario problem, so optimality
cuts have to be updated (“peeled back” in the language of Higle and Sen (3]) to reflect
contributions from the other problems.
There are several ways to perform the update.
A. If the uncertainty is in the right hand side only and if the solved scenario corresponds
to the mean value of the realizations (i.e. b = Ef;‘l pibi), then the cuts are valid
without modification. (This is a simple application of Jensen’s inequality.)
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B. If L; is a lower bound on the objective value for the node problem at node ¢, for
t = 1... K, then the optimality cut

wyBizo + 90 < miby

must be adjusted to read -

K,
iy Bize + 90 S p17ghy +ZP-’L:'-

=2

C. If n} are dual feasible solutions for all the second stage node problems, then the
optimality cut (4) can be adjusted to

K, K,
S piniBizo +90 < Y pinihy

=1 =1
This form is obviously tighter than B. but involves more work. If the A-matrices and
cost coeflicients are deterministic, it is of course permissible to use x; throughout.
D. A simplified version of the:algorithm dispenses with creating the cuts entirely and

simply throws away information about the “superbasic” variables z3.

Multistage problems are similar; the schematic decision tree of figure la. may serve
as an example with four stages.

stetstsdetetrtry

| I S

8 9 10 11 12 13 14 1S 8 9 10 11 12 13 14 15
Figure la. A four-stage Figure 1b. A two-stage
decision tree lower bound problem

The scenario problem (1 2 3 4) is solved first and cuts based on the second stage (2 3 4)
are created and updated to be valid for the eight-scenario problem indicated in figure 1b.
Because t